
SC23 Scale Performance Update

Storage Scale User Group Meeting @ SC23

Denver, CO – Nov 12, 2023

Presented by: John Lewars (IBM)

Additional Slides Contributions by: John Divirgilio, Pidad D’Souza, Felipe Knop, Hai Zhong Zhou

Disclaimer

IBM's statements regarding its plans, directions, and intent are subject to change or withdrawal without notice

at IBM's sole discretion. Information regarding potential future products is intended to outline our general

product direction and it should not be relied on in making a purchasing decision. The information mentioned

regarding potential future products is not a commitment, promise, or legal obligation to deliver any material,

code, or functionality. The development, release, and timing of any future features or functionality described for

our products remains at our sole discretion.

IBM reserves the right to change product specifications and offerings at any time without notice. This

publication could include technical inaccuracies or typographical errors. References herein to IBM products

and services do not imply that IBM intends to make them available in all countries.

Agenda

• ESS6000 Update

• Client-Side GNR and first stage of related improvements on the

ESS3500

• Update on io500 work – including new features used for io500 runs

• New COW-related performance improvements

IBM Storage Scale System 6000
The simplest and fastest way to deploy a global data platform for AI and Hybrid Cloud workloads

Scale-up to PBs and scale-out to YBs for GB/s+ performance and
capacity to manage your entire data ecosystem with lower cost

and enterprise security and resiliency your business requires

Scale from 1 to 1000s of system

Lab Measurements:

up to 310 GB/s seq. read* per system (building block) - ~2.5X ESS3500

up to 155 GB/s seq. write per system (building block) - ~2.6X ESS3500

up to 13M 4KiB random read IOPS** per system (building block)

**13 M IOPS with 10 clients and 24 of the BB’s 48 NVMe drives, using the NVMeoF protected tier
capability supported via special request as described in the Storage Scale System 6000 Data Sheet

Speed access to critical data with Intelligent and

automated data management services

Manage next generation and traditional workloads

with simultaneous high-performance file and object

data access services to the same data

Protect against cyber threats with Cyber-secure

data services for unstructured data including end to

end encryption and identification to recovery

Optimize local and remote access and simplify DR

with global hybrid cloud data services

Lower RTO times with proven data protection and

data resiliency services

IBM Storage
Scale System 6000

* Update: Chart was updated to reflect current lab read performance, as of
Dec. 4/23, an improvement over what was measured as of Nov. 12/23.

https://www.ibm.com/downloads/cas/JBVQYVXB

NVMeoF

Protocol Used to

Access Storage

Client ESS Server

physical NVMe drives
“local” NVMe devices; eg,

/dev/nvme0n1

NSDs built on “local” NVMe

devices

GPFS filesystem

NVMeoF driver (delivered in/with

distro)

Upcoming NVMeoF Solution for ESS

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

0 2 4 6 8 10 12 14 16 18 20

1
0
^6

4
K

iB
 r

a
n
d
.

re
a
d
 I

O
P

s

client nodes

4KiB random read IOPs (Direct IO) Using NVMeoF Exported Drives

ESS 3500 Configuration: 24 NVMe drives, 4 CX6/canister (1 port used per adapter)
Clients used with ESS3500 : 1 CX6 nr-io-queues=3, native MP with iopolicy=roundrobin

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

0 2 4 6 8 10 12 14 16 18 20

1
0
^6

4
K

iB
 r

a
n
d
.

re
a
d
 I

O
P

s

client nodes

4KiB random read IOPs (Direct IO) Using NVMeoF Exported Drives

ESS 3500 Configuration: 24 NVMe drives, 4 CX6/canister (1 port used per adapter)
Clients used with ESS3500 : 1 CX6 nr-io-queues=3, native MP with iopolicy=roundrobin

ESS6000 Configuration:

1 building block – consisting of 2 canisters/servers,

each using 8 (CX7) Infiniband 200 Gb/s links and

24 of the 48 NVMe drives

Clients used with ESS6000:

10 clients, each with 2 AMD EPYC 9254 24-core

sockets and two 200Gb/s IB connections to servers

ESS3500 results in black

ESS 6000 achieves 13M IOPS on 10
clients with 24 of the BB’s 48
NVMe drives, using the NVMeoF
protected tier capability supported
via special request as described in
the Storage Scale System 6000
Data Sheet

https://www.ibm.com/downloads/cas/JBVQYVXB
https://www.ibm.com/downloads/cas/JBVQYVXB

Client-side GNR Architecture

8

• Improved performance: Client node fetches data

directly with zero-copy RDMA / GPU Direct Storage. Efficient

lock free structures

• Improved availability: Direct client access to all data.

Erasure encoding across racks or cloud availability zones.

• Reduced client impact: Limit on threads & memory.

Optional DPU offload or dedicated server nodes.

• Reduced cost: Deep cost-effective storage density.

Increased storage capacity per node

Next generation ECE / ESS technology for high
performance exa-scale disaggregated storage

Client node provides erasure encoding across storage nodes

Storage may be converged or disaggregated

All Clients can directly read and write all storage

Client caches mapping of virtual disks to physical location

Storage nodes export aggregated disks spanning local devices

Checksum encodes data version to detect stale mappings

End-to-end checksum reliability

High-Speed
Redundant

Network

Hundreds or thousands
of client nodes

Client
Compute

Nodes

Deep
Disaggregated
Storage (EBoF)

IBM Elastic Storage System 3500
The simplest and fastest way to deploy a global data platform for AI and Hybrid Cloud workloads

9

IBM Spectrum Scale

IBM Breaks Storage Performance Barriers for AI
and Hybrid Cloud Workloads and Accelerates

Recovery Times for Cyber Threats

up to 500+YB per cluster

up to 30M IOPS per rack

up to 126 GB/s per building block

up to 1.8 TB+/s per rack

Speed access to critical data with Intelligent and

automated data management services

Manage next generation and traditional

workloads with simultaneous high-performance

file and object data access services to the same

data

Protect against cyber threats with Cyber-secure

data services for unstructured data including end

to end encryption and identification to recovery

Optimize local and remote access and simplify

DR with global hybrid cloud data services

Lower RTO times with proven data protection and

data resiliency services

Read bandwidth with 4 HDR200 adapters per canister improved from 91 GB/s to 126 GB/s in ESS 6.1.8.

Performance improved to 117 GB/s with 3 HDR200 adapters, and 100 GB/s with 2 HDR200 adapters.

IBM Elastic Storage System 3500 – Memory Bandwidth and
CPU Usage Measurements from Development Builds

• Below are measurements the single checksum feature, showing how enabling this feature changes CPU

usage and memory bandwidth usage on both the client and server side.

• These measurements were done with nine HDR200 connected clients

**These

measurements

were done

originally as part of

work on client-

side-GNR in the

5.1.5 time frame.

The final shipping

code on ESS3500

delivers 126 GB/s

sequential read

throughput.

io500 Work and Plan
• The io500 benchmark suite has received an increasing amount of focus in recent

years and now provides an important set of performance metrics that the Spectrum
Scale Research and Development teams are working on.

• One of the goals of io500 is to measure ‘hard’ workloads to determine the worst
possible performance that may be achieved across all possible I/O patterns.

• By improving the performance of the ‘hard’ io500 benchmarks, we expect to improve
the performance of challenging modern workloads, following this plan:

1. Focus on the low performing or degraded benchmarks first, determine
bottlenecks, and then apply existing tuning parameters to improve performance.

2. Develop new tuning parameters/hints that allow us to target focus workloads.

3. Improve heuristics so that we can automatically adapt to workloads without
specific tuning parameters or hints so that future runs of the benchmark are able
to achieve optimal performance without explicit hints/tuning.

IO500 submissions from IBM for SC23 (all with IBM Storage Scale 5.1.9.0)

Benchmark
Storage Scale
5.1.9.0

IBM Tucson(EPYC
7302P 16-Core, 10
clients, 8MB
Blocksize, Infiniband)
– ESS3500 2BBs

IBM Ehningen (EPYC
9274F 24-Core 10 clients
(4MB Blocksize,
Infiniband) – ESS3500
3BBs

IBM Cloud HPC (Xeon
Platinum 8260 48-core,
199 nodes, 4MB
Blocksize, Ethernet
100Gib/s) - SNC

ior-easy-write 106.6 140.6 757.9

mdtest-easy-write 231.5 288.5 3163.9

ior-hard-write 51.3 64.8 367.3

mdtest-hard-write 34.3 33.5 28.3

find 4965.6 3912.5 13502.2

ior-easy-read 205.0 227.1 787.1

mdtest-easy-stat 561.4 824.5 3558.7

ior-hard-read 27.0 27.9 172.6

mdtest-hard-stat 303.4 700.6 1993.1

mdtest-easy-delete 190.4 316.7 1640.1

mdtest-hard-read 373.5 464.9 998.9

mdtest-hard-delete 32.7 31.9 23.1

Bandwidth GiB/s 74.2 87.1 441.0

kIOPS 250.6 317.2 868.6

TOTAL Score 136.4 166.3 618.9

IO500 submission – Improvements on the IBM Tucson System

Benchmark
Storage Scale 5.1.9.0

IBM Tucson(EPYC
7302P 16-Core, 10
clients, 8MB
Blocksize,
Infiniband) –
ESS3500 2BB –
ISC23

IBM Tucson(EPYC 7302P
16-Core, 10 clients, 8MB
Blocksize, Infiniband) –
ESS3500 2BB – SC23

Percent Improvement

ior-easy-write 107.8 106.6 -1.1

mdtest-easy-write 184.5 231.5 25.5

ior-hard-write 49.9 51.3 2.8

mdtest-hard-write 33.6 34.2 1.8

find 4123.1 4965.6 20.4

ior-easy-read 204 205.0 0.5

mdtest-easy-stat 384.3 561.4 46.1

ior-hard-read 27 27.0 0.0

mdtest-hard-stat 297.5 303.4 2.0

mdtest-easy-delete 190.9 190.4 -0.3

mdtest-hard-read 399.8 373.5 -6.6

mdtest-hard-delete 26.4 32.7 23.9

Bandwidth GiB/s 73.8 74.2 0.5

kIOPS 222 250.6 12.9

TOTAL Score 128 136.4 6.1

Performance gains result
from the following:

• Code changes/tuning
that reduce the mutex
contention
(OpenFileHashTabMutex)
seen in mdtest-easy-stat
benchmark

• Code changes/tuning to
improve how efficiently
tokens are managed for
mdtest-hard-delete
benchmark

IO500 submission – Improvements on the IBM Ehningen Relative to IBM Tucson System

Benchmark
Storage Scale
5.1.9.0

IBM Tucson(EPYC
7302P 16-Core, 10
clients, 8MB
Blocksize,
Infiniband) –
ESS3500 2BB – ISC23

IBM Ehningen (EPYC
9274F 24-Core 10 clients
(4MB Blocksize,
Infiniband) – ESS3500
3BB

Percent Improvement

ior-easy-write 106.6 140.5 31.8

mdtest-easy-write 231.5 288.5 24.6

ior-hard-write 51.3 64.8 26.3

mdtest-hard-write 34.2 33.5 -2.3

find 4965.6 3912.5 -21.2

ior-easy-read 205.0 227.1 10.8

mdtest-easy-stat 561.4 824.5 46.9

ior-hard-read 27.0 27.9 3.2

mdtest-hard-stat 303.4 700.6 130.9

mdtest-easy-delete 190.4 316.7 66.3

mdtest-hard-read 373.5 464.9 24.5

mdtest-hard-delete 32.7 31.9 -2.4

Bandwidth GiB/s 74.2 87.1 17.5

kIOPS 250.6 317.2 26.5

TOTAL Score 136.4 166.3 21.9

Performance gains, relative
to the IBM Tucson
submission, result from:
• 3 ESS3500 building blocks

used instead of 2 building
blocks

• The Ehningen client
nodes with EPYC9274F
chips (November 2022
launch) are more
powerful than the Tucson
EPYC7302P (August 2019
launch) nodes

• Just like the IBM Tucson
submission,
(OpenFileHashTabMutex)
mutex contention in
mdtest-easy-stat is
mitigated through code
changes/tuning

IBM Cloud HPC system for HPC solution Development, Test, and enhancements. IBM
Research and IBM Systems EDA teams use for Chip Design, Verification and
Simulation works. IBM Storage Scale team uses it for Development and Performance
engineering and Scaling works. In addition, system is also used for Customer POCs
and co-development activities.

Bare Metal Server configuration: 199 nodes: Intel® Xeon® 8260 (2 Sockets), NVMe

Drives

Filesystem: IBM Storage Scale 5.1.9.0
maxStatCache 128K

nsdMinWorkerThreads 3842

nsdMaxWorkerThreads 3842

pagepool 100G

nBucketGroups 1024

preferDesignatedMnode yes

fsyncIsGlobal no

numactlOptioni 0 <= Binding mmfsd to same socket (0) as adapter

numactlOptionN 0

dataShipClientBuffersPerServer 10 <- For ior-hard-write

dataShipClientBufferPct 50

dataShipServerBufferPct 10

autoCompactDir 0 <- For mdtest-hard-delete

fgdlTokenBatchAcquire 1

IBM Cloud HPC Submission Details

Benchmark SCORE

ior-easy-write 757.9

mdtest-easy-write 3163.8

ior-hard-write 367.3

mdtest-hard-write 28.3

find 13502.2

ior-easy-read 787.1

mdtest-easy-stat 3558.7

ior-hard-read 172.6

mdtest-hard-stat 1993.1
mdtest-easy-
delete 1640.1

mdtest-hard-read 998.9
mdtest-hard-
delete 23.1

Bandwidth GiB/s 441.0

kIOPS 868.6

TOTAL Score 618.9

IO500 – SC23 results

10 Tasks Per Node

mpi-args: --bind-to numa:1 *

* Binding to the same socket as

adapter is located

Details on IBM’s Recent ESS io500 Submissions

Details Regarding IBM’s ESS3500 Cluster io500 submission for ISC23:

2x ESS 3500 Building Blocks, 2 servers/canisters per BB with 8MB Blocksize File System:
Four HDR-Infiniband links per canister
Single socket 48-core processor per canister
24x Samsung NVMe Drives per building block, shared across both canisters in each BB

10x Lenovo AMD clients:
One HDR200-Infiniband connection per client (Tucson) / two HDR200 connections (Ehningen)
Single socket - AMD EPYC 7302P 16-Core Processor per client (Tucson) / 24 core 9274F HDR200
(Ehningen)

256GB Memory per client (Tucson) / 192 GB/s memory per client (Ehningen) – page pool is 48GB / 50GB

Clients’ mmchconfig Tuning
/usr/lpp/mmfs/samples/gss/gssClientConfig.sh -M 65536
maxStatCache 131072
nBucketGroups 1024
preferDesignatedMnode yes
fsyncIsGlobal no
dataShipClientBuffersPerServer 50
dataShipClientBufferPct 50
dataShipServerBufferPct 50
autoCompactDir 0
fgdlTokenBatchAcquire 1 # not used for IBM Ehningen submission because it requires gpfs.base 5.1.9.0

IBM Tucson: Manager node role assigned to all 10 clients and

all four storage nodes

ESS 6.1.8.2 (RHEL 8.6) + Spectrum Scale upgraded to 5.1.9.0

on all canisters

IBM Ehningen: ESS 6.1.8.2 (RHEL 8.6) with Spectrum Scale left

at 5.1.8.1 on all canisters (Ehningen)

All storage nodes and clients not used for io500 assigned

manager node role

mdtest Hard Deletes - Prefetch Inode Lookups for Deletes (1/3)
• mdtest workload characterization

– mdtest Hard consists of four phases: 1) write, 2) stat, 3) read, 4) delete

– Write phase creates files of size 3901 bytes in a single shared directory, which the delete phase will remove

• Analysis

– Linux serializes updates on a directory. A single client node can only do one delete at a time for a given directory

– On each node, the stat, read, and delete phases operate on the set of files that another node operated on in the

previous phase; also the pfind benchmark will access these files after mdtest-hard-write runs

– Since the task mapping rotates between phases, each file delete generally needs to revoke the inode token and

read the inode (unless the job is only run on a single node)

• Proposed approach – Metadata (inode lookup) Prefetch for Deletes

• Observation: since the files being deleted should all have been created on one node, the inodes should have

been allocated from the same (or small set of) segment(s) of the inode allocation map

• We can predict which files will be deleted next when we observe files from the same segment of the allocation

map being deleted

• This predictive approach can be used to prefetch required tokens and read inodes in parallel, which mitigates the

serialization of lookups that occurs deleting files in the same directory on a node in Linux

• This predictive lookup Implementation was enabled in 5.1.3 and lab measurements showed up to a 2X improvement

• mmchconfig option enableIASegPrefetch (enabled, set to 1, by default)

mdtest Hard Deletes - Prefetch Inode Lookups for Deletes (2/3)

inode allocation map

Deletes

(*simplified sketch)

Deletes

prefetch

(*simplified sketch)

se
g

m
e

n
t

Io500 running on node 2

Additional
segments that
may be
prefetched from

se
g

m
e

n
t

Deletes

prefetch

(*simplified sketch)

se
g

m
e

n
t

Io500 running on node 1

Additional
segments that
may be
prefetched from

se
g

m
e

n
t

Deletes

prefetch

(*simplified sketch)

se
g

m
e

n
t

Io500 running on node X

se
g

m
e

n
t

[... Additional nodes ...]

Additional
segments that
may be
prefetched from

Multiple segments may be dedicated to each node (assuming sufficient inodes are free), but, since mdtest-hard-

delete operates on only one directory, only one segment is typically used at a time during the file creation phase

(the total number of segments used depends on how many files are created, the number of inodes per segment,

and whether sufficient inodes are available to assign all clients dedicated segments)

To get the performance improvements we’ve observed in the lab, here are two recommendations:

1. There must be sufficient free inode segments so that the (mdtest-write-hard) create phase of the

benchmark is able to allocate sufficient dedicated inode segments to all clients involved

2. Designated metanode function must be enabled: echo 999 | mmchconfig preferDesignatedMnode=yes

[...] [...] [...]

Metadata (inode lookup) prefetch for deletes can be limited by serialization in FineGrainDirectoryLocking

(FGDL) token acquisition flows. Storage Scale 5.1.9 adds an undocumented token batching technique to

efficiently acquire a wider range of FGDL ByteRange(BR) tokens. Such batched requests are sent in a single RPC

to the token manager. The token manager then grants this wider range of non-conflicting FGDL BR tokens.

• Speeds up FGDL BR token acquisition

• Minimizes the RPC traffic on the cluster

Set “echo 999 | mmchconfig fgdlTokenBatchAcquire=1” (defaults to 0) on both clients and IO servers to

enable the token batching function (in the future we intend to add a new hint for this feature, or enable it by

default)

A large number of file deletions can drive directory compaction, which merges the directory blocks. As a result of

compaction, we may end up with directory blocks containing inodes from multiple segments. Token batching

performs optimally when a minimal number of segment numbers exist for the inodes in the block.

Set “echo 999 | mmchconfig autoCompactDir=0” (defaults to 1, which enables compaction) to avoid the

merging of directory blocks. We intend to optimize compaction during intensive file deletion in the future.

In our lab measurements, we have observed an improvement of ~15-20% to mdtest-hard-delete phase during

io500 runs by making these two configuration changes.

mdtest Hard Deletes - Prefetch Inode Lookups for Deletes (3/3)

GPFS maintains both stat cache and file cache entries

in an array of hash table entries, with the number of

array elements defined by the undocumented

mmchconfig option nBucketGroups. With more array

elements, (OpenFileHashTabMutex) mutex contention

serializing access to cached entries can be reduced.

In Storage Scale 5.1.9, the limit on nBucketGroups is

increased from 128 (the default) to 1024.

The limits on the caching of objects are defined by:

1. mmchconfig option: maxStatCache, which limits

stat cache entries (limited to 100000000)

2. mmchconfig option: maxFilesToCache, which limits

cached open file`s (limited to 100000000)

3. Shared segment memory for caching stat cache

and file cache memory (see details here)

4. Token server memory needed to manage cached

entries (see details here in a past Scale presentation)

Details on nBucketGroups Configuration Option

Stat

Cache

Entry

Stat

Cache

Entry

Stat

Cache

Entry

Stat

Cache

Entry

Stat

Cache

Entry

Stat

Cache

Entry

[...]

Stat

Cache

Entry

Stat

Cache

Entry

Stat

Cache

Entry

[...]

[...]

[...]

BUCKETGROUP 0

BUCKETGROUP 1

BUCKETGROUP N-1

Bucket Group

Number

[…]

Example of stat cache entries in array of hash tables

Hash Tables with Stat Cache

Entries

https://www.spectrumscaleug.org/wp-content/uploads/2020/04/SSSD20DE-Spectrum-Scale-Memory-Usage.pdf
https://www.spectrumscaleug.org/wp-content/uploads/2020/04/SSSD20DE-Spectrum-Scale-Memory-Usage.pdf

New fsyncIsGlobal option added in Scale 5.1.7
(This option is Documented in 5.1.9 release)

File

Data

2

1
Fsync data to file

What happens when fsync() is called to persist a file that resides on Storage

Scale file system?

The node calling fsync()

will flush any pending

dirty data the calling

thread has for the target

file.

The standard for fsync()

in a parallel file system is

not defined, by default,

Storage Scale takes a

conservative approach

and flushes any pending

dirty data for the target

file.

Since the standard for fsync() in a parallel file system is not defined,

Storage Scale takes a conservative approach and flushes any pending

dirty data for the target file, but this behavior (the second step depicted

here) can be disabled as of 5.1.7.0 by setting:

mmchconfig fsyncIsGlobal=no –i # no mmfsd restart required

[…]

Other nodes also

fsync data to file

Details on new 5.1.9 COW Improvement

▪ Flush dirty data

▪Quiesce FS
operations

▪ Flush dirty data

▪ Create sparse
shadow inode
file

▪ Add entry to
Fileset Metadata
File

original
inode file

shadow
inode file

FS descriptor

older
snapshots
…

Snapshot Creation Details

Snapshot: inode copy-on-write

▪ First update to an inode copies
the inode block into the
shadow inode file

▪ Data/indirect block addresses
in the snapshot inode are
replaced with a special “ditto”
disk address

▪ Ditto is a logical back pointer:
when a reading file in the
snapshot, a ditto means: This
data block has not changed
since the snapshot was
created; read the data from
the original file instead (“ditto
resolution”)

▪ A hole in the shadow inode file
is like an inode full of dittos

copy
inode
block

Snapshot: data copy-on-write

▪ First update to a data
block copies the data
block into the
snapshot file

▪ Ditto replaced with the
address of a new data
block

▪New data block must
be flushed to disk
before old data block
can be updated

copy
data block

Snapshot Performance Improvements
❑Inode Copy-On-Write (COW) performance improvement
➢Details on COW-related performance issue hit by some customers using

snapshots, resulting in llMsgCopyInodeBlock and llMsgMultiBlockUpdate
waiters, e.g.:

node_name_changed: Waiting 8.8900 sec since 2023-06-10_21:09:37, monitored, thread
1690813 MsgHandler@llMsgCopyInodeBlock: on ThCon d 0x7F6E3C051318
(MsgRecordCondvar), reason 'RPC wait' for llMsgMultiBlockUpdate

• A Snapshot is used to capture a point-in-time copy of file system or fileset. Whenever a file is
changed, created or deleted, its inode is copied to the latest snapshot to record that point-in-time
state of the file before updating it.

• Inode COW is based on the inode block granularity: a one-time copy needs to copy all inodes in
that block

• Only one thread performs the copy operation for an inode block.

• A one-time inode COW is needed for an inode block if no changes have been made to any of the
inodes since the last snapshot was taken.

• With lots of file creations, deletions, and changes to files, frequent inode COW requests are
triggered.

Snapshot Performance Improvements
❑Inode Copy-On-Write (COW) performance improvement

➢Background for the performance issue hit by some customers (cont’d)
• With many client nodes (e.g., 100s or 1000s of nodes in the cluster), there can be many

concurrent inode COW requests coming from different nodes.

• In addition, for each inode block COW, the updates from COW requests need to be
broadcast to all the client nodes who have mounted the file system.

• Broadcasting the inode COW updates to all client nodes takes longer if some clients have
network issues.

• File operations that trigger inode COW will get their replies only after the broadcasts
described above complete

Snapshot Performance Improvements

➢Solution to improve the inode COW performance
• Change the broadcasting for the inode COW updates from sync mode to the async mode

• A reply can be sent to the node initiating the inode COW request without waiting for the
broadcast completion

• The file operations can proceed forward more quickly.

• With this approach, regardless of the time taken for the broadcast for the inode COW (e.g.,
either because of a scaling issue with how many client node must be broadcast to, or
network issues with some client nodes), it won’t slow down the file operations that initiated
the inode COW requests. In summary:

• If there are no network problems on the FS manager node, changing the broadcast to be
asynchronous can provide a big performance improvement for the case in which a subset of clients
might otherwise delay the broadcast operations

• For example, for the original case in which some clients drop packets for a synchronous broadcast,
the entire broadcast operation will be limited by the performance of these slow clients, but, after the
design change to switch to asynchronous mode, the broadcast flow is changed to no longer be
limited by the slow performance of clients experiencing packet loss

Snapshot Performance Improvements

➢Solution to improve the inode COW performance (cont’d)
• For any client node without this improvement, the reply for inode COW request is still sent

only after the broadcast above completes:

• The performance of async broadcasting may still impact the overall system performance
because of the above

• Another improvement is also made to batch the async broadcast requests before
broadcasting messages:

• Fewer RPC messages are broadcasted

• This change mitigates the impact of not having the new code fix applied to all client nodes, though it
must be applied to the file system manager node to have an impact

Thank you for using

	Slide 1: SC23 Scale Performance Update
	Slide 2: Disclaimer
	Slide 3: Agenda
	Slide 4: IBM Storage Scale System 6000
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: IBM Elastic Storage System 3500
	Slide 10: IBM Elastic Storage System 3500 – Memory Bandwidth and CPU Usage Measurements from Development Builds
	Slide 11: io500 Work and Plan
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Details on IBM’s Recent ESS io500 Submissions
	Slide 17: mdtest Hard Deletes - Prefetch Inode Lookups for Deletes (1/3)
	Slide 18: mdtest Hard Deletes - Prefetch Inode Lookups for Deletes (2/3)
	Slide 19
	Slide 20
	Slide 21: New fsyncIsGlobal option added in Scale 5.1.7 (This option is Documented in 5.1.9 release)
	Slide 22: Details on new 5.1.9 COW Improvement
	Slide 23: Snapshot: inode copy-on-write
	Slide 24: Snapshot: data copy-on-write
	Slide 25: Snapshot Performance Improvements
	Slide 26: Snapshot Performance Improvements
	Slide 27: Snapshot Performance Improvements
	Slide 28: Snapshot Performance Improvements
	Slide 29: Thank you for using

