

High performance S3 access with IBM Storage Scale, ECE and IBM Storage Fusion

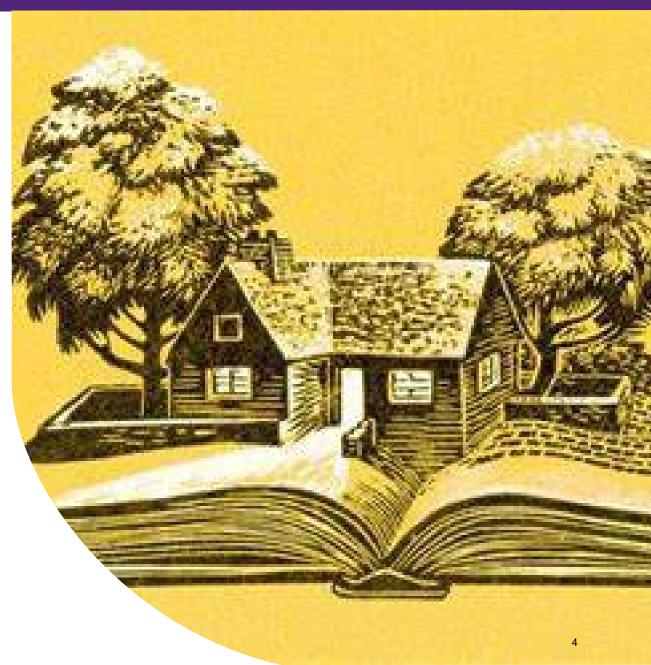
Jake Carroll, Chief Technology Officer, Research Computing Centre, The University of Queensland, Australia.

jake.carroll@uq.edu.au

Context

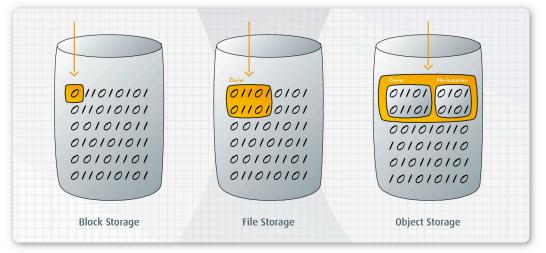
UQ is:

- Six major faculties
- Eight institutes
- Fifteen sites
- ~55,400 students (2022)
- ~7,410 full time staff (2022)
- 4000 researchers
- ~25,000 endpoints
- Tier2 supercomputer: more than 10,000 CPU cores, cutting edge GPUs.
- ~100 PB of research data storage under management.
- A whole bunch of ESS systems. GH14's, ESS3000's, ESS5000's, ESS3500's....and an ESS 6000 (!)...


UQ Research Computing Centre

Story time...

- A few months ago, we caught up with Ulf in Germany at ISC 2023.
- We learned lots about *Sauerkraut*, but we also talked about protocols and what might come next in ESS.
- S3 has had an odd and bumpy life in IBM Storage Scale land. It seems to have changed shape as often as IBM marketing people change the name of their products.
- Andrew Beattie and I went back to the lab to see where we might take this.



The Protocols Talk

Qualifying the S3/object use case

- The use of object storage is *still* contentious in the research and advanced computing communities.
- The worthwhile nature of object storage for scientific, supercomputing and research computing communities has been limited due to application, performance and flexibility limitations.
- Persistently, we see people wanting to treat their S3 object targets like filesystems. "I want to browse it with Cyberduck like windows explorer/Mac Finder over SMB"
- A use case emerged a couple of months ago where the only feasible way to ingress and egress data over long distances was https.

"Can we have S3 please, Jake?"

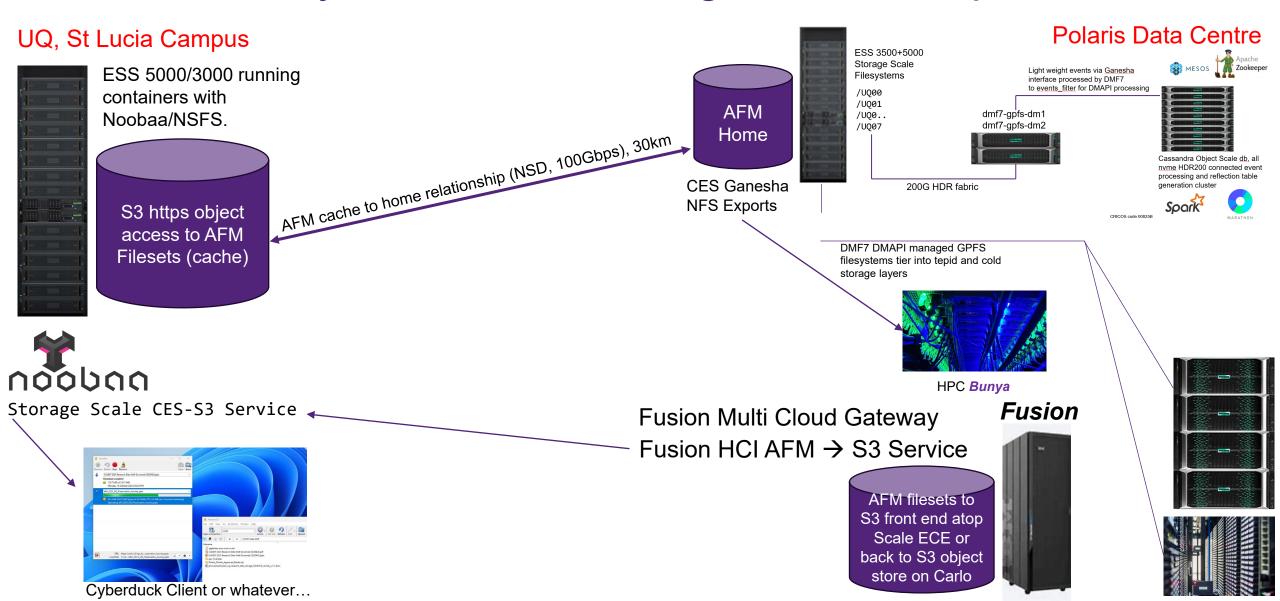
The University of Queensland, Brisbane, Australia

Centre for Superbug Solutions

Problem domain: Comparatively high latency, comparatively low bandwidth. Limited native filesystem connectivity options. Needs to be convenient access for "stashing" and "hauling" data.

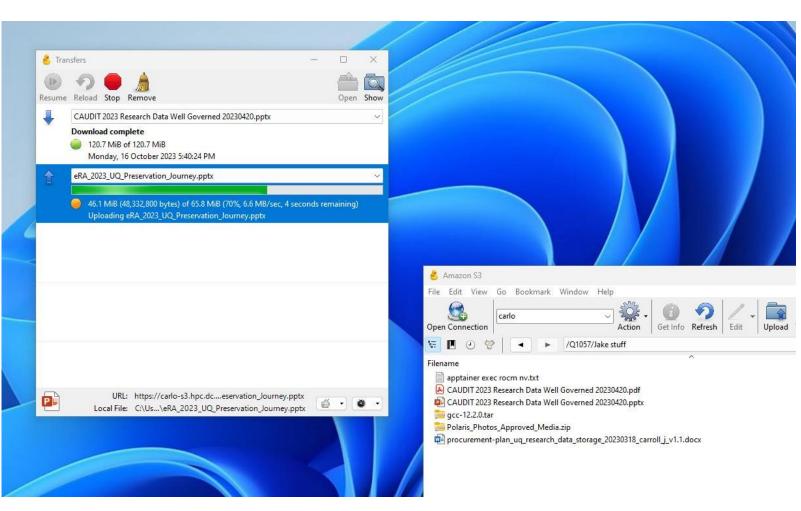
Getting data to and from a supercomputer in another state of Australia: 1,188km away (738 miles) The Australian National University, Canberra, Australia

Storage S Scale – ESS3500: AFM Cache


The *Bunya* Supercomputer. The *Gadi* Supercomputer.

No AFM target, or IBM Storage Scale targets here. All just Lustre scratch.

CRICOS code 00025B



The Anatomy of our S3 + Storage Scale setup, so far.

What does it look like, to a user?

TL;DR – Browse your AFM fileset, just like you would an SMB or NFS share out of a regular CES protocol node stack.

How does this knit together?

- *Three* scenarios to express. This is the Noobaa Service:
 - running inside Fusion HCI. It is acting as an AFM front end (like a scale AFM fileset) and points back to an AFM home (carlo) over https, to our CES-S3 service.
 - running inside Fusion HCI and pointing at the internal ECE filesystem with a persistent claim for an S3 object store backend.
 - running inside Carlo's Power9 nodes to provide CES-S3, exposing AFM filesets *as an S3 representation* for S3 GET's and PUT's
- Delivering S3 from either the Fusion HCI Scale filesystem (S3 to persistent volume claim) or...
- S3 from External object store mapped into the Fusion cluster as an internal S3 data service

Why is that significant?

 We can use the Fusion MCG (Multi Cloud Gateway) to write to multiple different external object stores simultaneously..

Benchmarking

COSBENCH - CONTROLLER WEB CONSOLE

Controller Overview

Name: not configured URL: not configured

Driver	Name	URL	IsAlive	Link
1	release-name-cosbench-driver-0.release- name-cosbench-driver	http://release-name-cosbench-driver-0.release-name- cosbench-driver:18088/driver	•	view details
2	release-name-cosbench-driver-1.release- name-cosbench-driver	http://release-name-cosbench-driver-1.release-name- cosbench-driver:18088/driver	•	view details
3	release-name-cosbench-driver-2.release- name-cosbench-driver	http://release-name-cosbench-driver-2.release-name- cosbench-driver:18088/driver	•	view details
4	release-name-cosbench-driver-3.release- name-cosbench-driver	http://release-name-cosbench-driver-3.release-name- cosbench-driver:18088/driver	•	view details

submit new workloads

config workloads

advanced config for workloads

Active Workloads

		ID	Name	Submitted-At	State	Order	Link
- [Cancel						

Historical Workloads 🔢

view performance matrix

ID	Name	Duration	Op-Info	State	Link
w1	s3-carlo	Oct 27, 2023 2:08:20 AM - 2:24:20 AM	init, prepare	finished	view details
w2	s3-carlo	Oct 27, 2023 2:38:39 AM - 2:38:47 AM	init, prepare	terminated	view details
w3	s3-carlo	Oct 27, 2023 2:39:25 AM - 2:39:40 AM	init, prepare	cancelled	view details
w4	s3-carlo	Oct 27, 2023 2:41:51 AM - 2:43:45 AM	init, prepare	cancelled	view details
w5	s3-carlo	Oct 27, 2023 2:43:56 AM - 2:48:46 AM	init, prepare	finished	view details
w6	s3-carlo	Oct 27, 2023 3:03:51 AM - 3:08:32 AM	init, prepare	failed	view details
w7	s3-carlo	Oct 27, 2023 3:09:15 AM - 3:10:18 AM	init, prepare, write, cleanup, dispose	finished	view details
w8	s3-carlo	Oct 27, 2023 3:11:18 AM - 3:11:26 AM	init, prepare, write, read, cleanup, dispose	terminated	view details
w9	s3-carlo	Oct 27, 2023 3:11:50 AM - 3:13:13 AM	init, prepare, write, read, cleanup, dispose	finished	view details
w10	write1GBfull	Oct 27, 2023 3:13:33 AM - 3:17:22 AM	init, prepare, write	cancelled	view details
w11	s3-carlo	Oct 27, 2023 3:20:56 AM - 3:26:02 AM	init, prepare	failed	view details

Archived Workloads

view performance matrix

load archived workloads

resubmit

Workload

Beta Release

Basic Info

ID: w1	3 Name:	write1GBfull	Current State:	processing	Current Stage:	1GB1
--------	---------	--------------	----------------	------------	----------------	------

Submitted At: Oct 27, 2023 3:32:23 AM Started At: Oct 27, 2023 3:32:23 AM Stopped At: N/A

more info

Snapshot

General Report

Op-Type Op-Count Byte-Count Avg-ResTime Avg-ProcTime Throughput Bandwidth Suc	c-Ratio
---	---------

The snapshot was taken at 3:32:56 AM with version 2.

Stages

Current Stage	Stages completed	Stages remaining		Start Time		End Time	Time Remaining
1GB1	0	7		3:32:23 AM			
ID		Name	Works	Workers	Op-Info	State	Link
w13-s1-1GB1		1GB1	1 wks	1 wkrs	write	running	view details
w13-s2-1GB8		1GB8	1 wks	8 wkrs	write	waiting	view details
w13-s3-1GB32	1	GB32	1 wks	32 wkrs	write	waiting	view details
w13-s4-1GB64	1	GB64	1 wks	64 wkrs	write	waiting	view details
w13-s5-1GB128	10	GB128	1 wks	128 wkrs	write	waiting	view details
w13-s6-1GB256	10	GB256	1 wks	256 wkrs	write	waiting	view details
w13-s7-1GB512	10	GB512	1 wks	512 wkrs	write	waiting	view details

There are 7 stages in this workload.

Actions

cancel-workload

go back to index

How is it looking, in real life?

```
[user123@gadi-login-04 scratch]$ s3cmd get s3://Q3967/TestDir/xx.csv.gz ./
```

```
download: 's3://Q3967/TestDir/xx.csv.gz' -> './xx.csv.gz' [1 of 1]
```

3502926275 of 3502926275 100% in 56s 58.65 MB/s done

[user123@gadi-login-04 scratch]\$ s3cmd put xx.csv.gz s3://Q3967/TestDir/xx2,csv,gz -disable-multipart

```
upload: 'xx.csv.gz' -> 's3://Q3967/TestDir/xx2,csv,gz' [1 of 1]
```

3502926275 of 3502926275 100% in 127s 26.16 MB/s done

I get around 60sec for 3GB of put/get , but I am pretty sure that could be optimised with a better .s3cfg configuration.

After some practice, I can now do the same in about 30sec!

Where to from here?

There is still some work to do to make this a production grade in our opinion.

- 1. It isn't HA (yet). Single point of failure in CES-S3 protocol stack pinned into a node.
- 2. It isn't scalable from an auth-setup, key handout and secret sharing process.
- 3. There is no automation yet to scale up our existing filesets over AFM to make them all S3 and object accessible "at the click of a button".

Where to from here – auth complexity to solve?

We have some "one to many" vs "many to one" auth challenges, too. UQ's auth model will likely demand individual keys and secrets per user. Perhaps that goes without saying, but consider...

- That same user might want access to multiple buckets. (Common use case!)
- That has ACL issues, instantly as buckets are mapped to a single GID.
- If you have multiple users with multiple UIDs/GIDs they can't all have individual keys with out some sort of internal database to map or some kind of external authentication system to manage it

Basket weaving, at the moment.

There is a lot of retrofitting, scripting and glue to be put in here that doesn't exist yet. We think IBM might need to do a bit of work on this one to make it more robust from the auth perspective.

Irek, Andrew and Dale had to manually hand-craft our first S3 enabled AFM fileset parameters for our users whom asked for them. We aren't at "click a button and share" status yet.

Thank you.

UQ:

Irek Porebski

IBM

Andrew Beattie, Dale McCurdy

