IBM Storage for Data and AI -Solutions High Performance SMB/CIFS

Chris Maestas IBM Chief Executive Architect Storage Solutions for Data and AI cdmaestas@us.ibm.com

Who we are

Data management leader

17	top technology companies served	150	employees
25+	years of open-source contributions	300+	projects per year
30+	awards	300+	million product lines powered by Tuxera
65%	CAGR since 2009	Close par	tnership with Microsoft since 2009

We're a global company with global recognition

TUXERA-

Fusion File Share by Tuxera

World's most advanced and scalable enterprise SMB server on Linux

SAMBA has technical limitations

Not developed at the same pace as Microsoft's SMB

Especially SMB 3.0 and up

License issues with GPLv3

Limited performance

- Process per connection
- Limited multichannel support
- No RDMA support
- No inline compression support

Low scalability

- Low number of concurrent opens
- Low number of concurrent connections
- Poor random workload support
- High CPU and memory usage

Lack of enterprise features

- No continuous availability
- No persistent handles
- No application transparent cluster support
- No Direct IO support

Key advantages of Fusion File Share

Our high-performance, highly-scalable, dropin replacement for Samba.

- Highly threaded architecture
- High-performance 2x to 60x faster than SAMBA
- 100% to 500% better scalability than SAMBA
- Fault tolerant with Transparent failover and Continuous Availability
- Extensive SMB-protocol support 3.1.1
- Scale-out (active-active)
- RDMA (SMB-Direct), Multichannel, and Compression
- Low CPU and memory usage
- Low latency
- Native GPFS support

Key advantages of Fusion File Share

Highly threaded architecture with adjustable settings for different workloads

Each client connection is a thread, not a process:

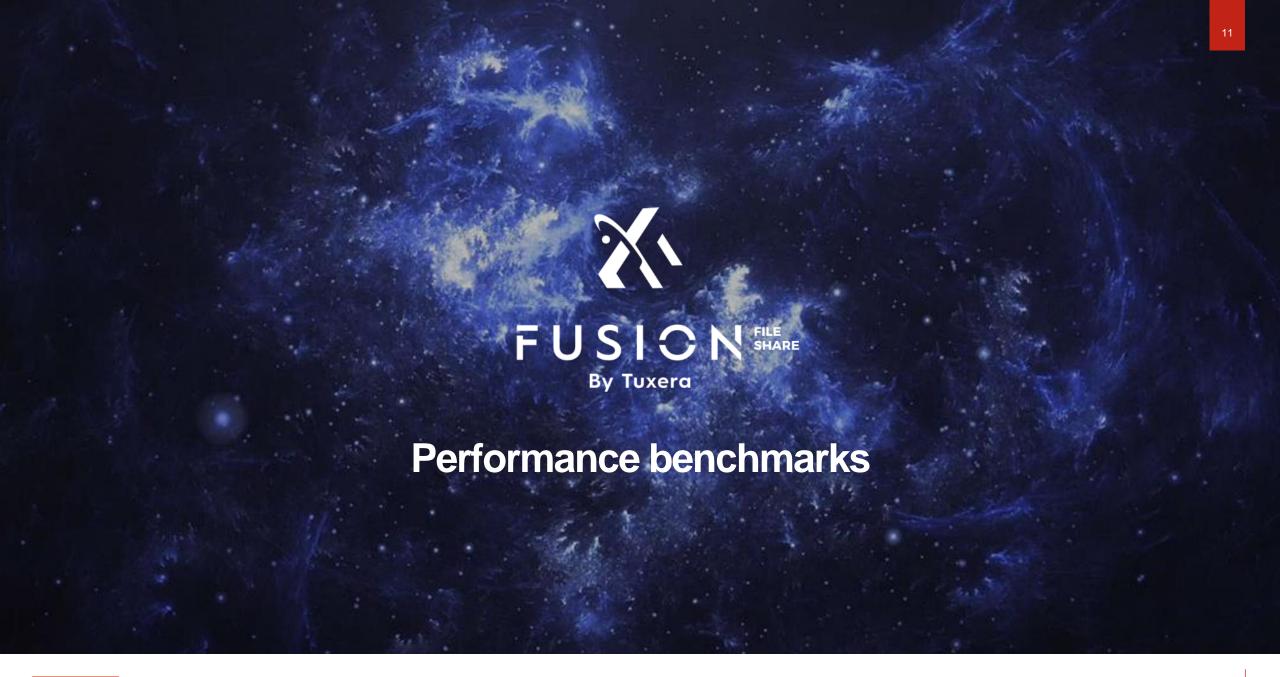
- Data transport threads
- Meta data transport threads
- VFS data threads
- VFS meta data threads
- Minimized CPU & memory usage

Adjustable quality of service by tuning:

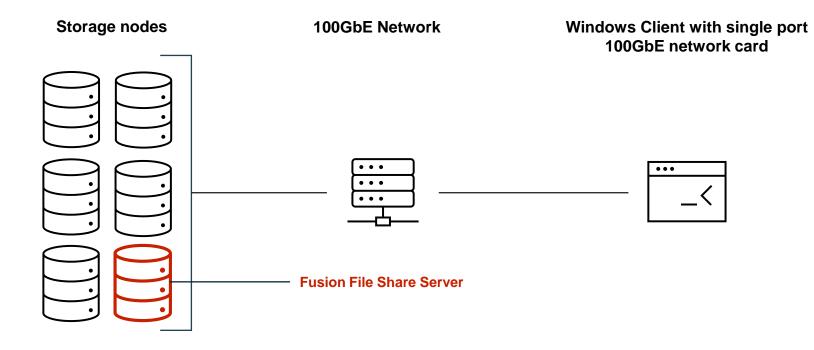
- Concurrent open files
- Concurrent client connections
- Concurrent open files per user-session
- Concurrent VFS threads per share

- Windows Active Directory
- Advanced ACL handling
- Multiprotocol support: ACL, Shared access
- Custom VFS support
- Custom clustering support
- Persistent handles
- Continuous availability, with single, dual or multinode
- Transparent failover
- High availability

- Change notify
- Secure dialect negotiation
- Encryption: AES-256-CCM, AES-256-GCM
- Authentication: NTLM, Kerberos, LDAP
- Pre-authentication integrity
- Audit/logging support
- DFS support
- Dynamic configuration change
- Quota support
- Internal health monitoring
- Runtime statistics



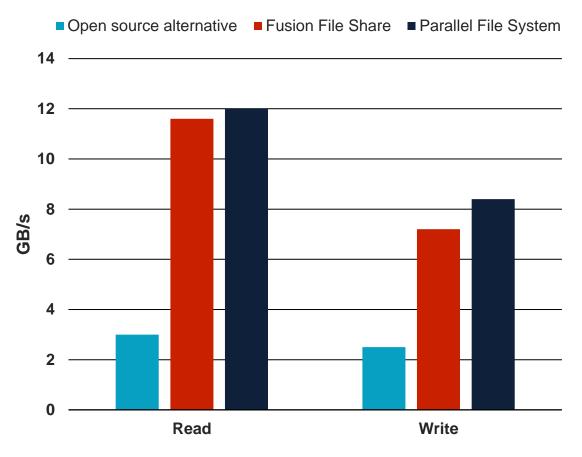
Scalability and performance


- SMB over RDMA (SMB Direct)
- SMB multichannel
- Alternate data stream support
- Enterprise scalability capability to saturate 100 Gb/s networks
- Improved latency compared to other SMB solutions
- Inline compression

- Configurable multi-level thread-pool (VFS, transport, encryption, compression, ...)
- Improved small file performance
- Scales with cores, memory, and nodes
- Sustains higher number of concurrent opens and connections
- Improved encryption performance

Single client performance test setup

Single client performance

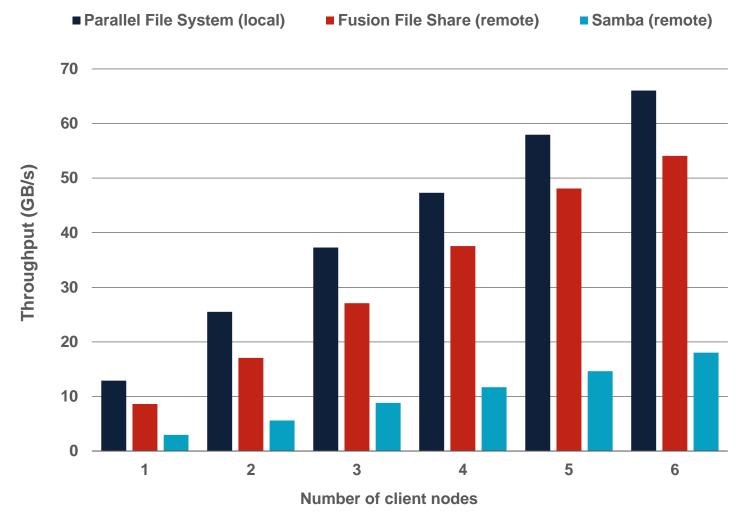

Fusion File Share contributes **over 85%** of the speed throughtput for high-performance parallel file systems

Single client write	performance	Single client read performance			
Fusion File Share	Parallel file system	Fusion File Share	Parallel file system		
7.2 GB/s	8.4 GB/s	11.6 GB/s	12.0 GB/s		

Test setup:

- Fusion File Share server: Active-passive, fault tolerant configuration used as the SMB gateway, running on a storage node.
- Parallel file system storage: 6 nodes of Supermicro architecture:
- Intel Xeon Gold 6226R, 192GB DDR4-2933 ECC REG SDRAM, Micron 9300 MAX 3.2TB NVMe PCIe 3.0 3D TLC U.2, Mellanox AOC-MCX555A-ECAT CX-5 VPI EDR IB adapter & 100GbE,1p, QSFP28, PCIe3x16
- Windows client: single port 100GbE network card with 2 x Xeon 4214 and 768 GB RAM
- Network is running 100GbE end-to-end, through a Mellanox 100GbE switch.

FIO test script with direct IO

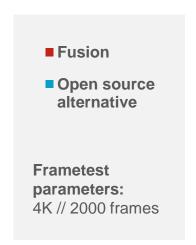

Maximize link speed potential with

linear scaling

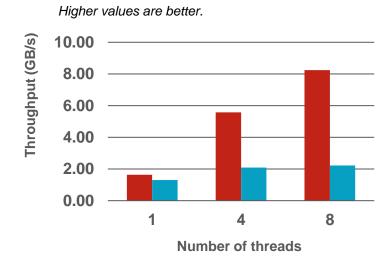
Samba is outperformed by Fusion with one client. As more clients are added, Samba continues to underperform compared to Fusion.

Scale-out sequential read performance comparison

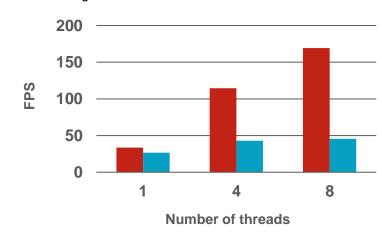
Fusion File Share versus Samba using FIO

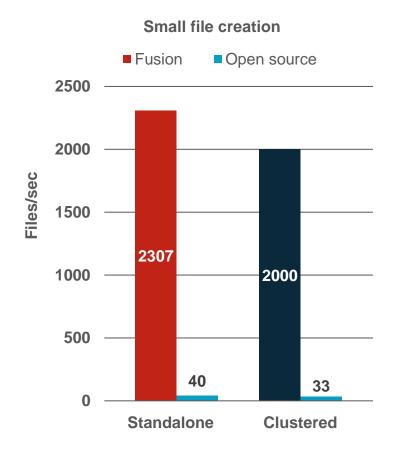


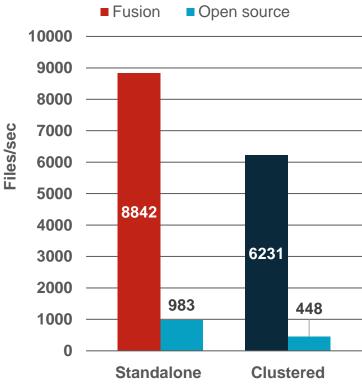
Up to 2.7x multi-threaded performance advantage over open source


M&E workload performance comparison


Fusion File Share versus open source alternative using Frametest



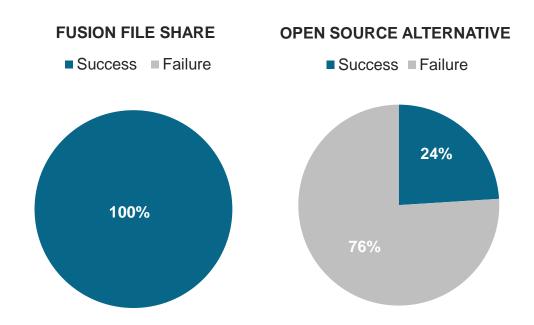



Up to 61x small file creation performance advantage over open source when clustered

Small file performance comparison

Standalone & clustered Fusion File Share vs open source using Oracle vdbench

Small file random write


Workload: randomly open, write 1 kB, close files in a directory with 30,000 files for a period of 30 seconds

Fast, successful connections

The open source alternative failed to meet the required performance benchmark of connecting 200 clients per second at a rate of 76%

SMB connection rate

(200 new clients generated per second)

Test setup: Lenovo P52s Mobile Workstation // 8th Generation Intel® Core[™] i7-8650U Processor with vPro® (1.90GHz, up to 4.20GHz with Turbo Boost, 8MB Cache) // Ubuntu Linux version 4.15.0-52-generic // 32 GB DDR4 (16 + 16) 2400MHz RAM // 1 TB Solid State Drive, PCIe-NVMe OPAL2.0 M.2 // 1 Gigabit Ethernet // Open source alternative

POC Environment

Test Cases

- 1- Single Client SMB2 Performance over TCP (IPoIB)
- 2- Single Client SMB3 Multi-Channel over TCP (IPoIB)
- 3- Single Client SMB3 Direct using RDMA (EDR IB)
- 4- Multi-Client SMB3 Direct using RDMA (EDR IB)
- 5- Single GPFS Client using RDMA (EDR IB)

POC/Benchmark Results – 4GB Filesize

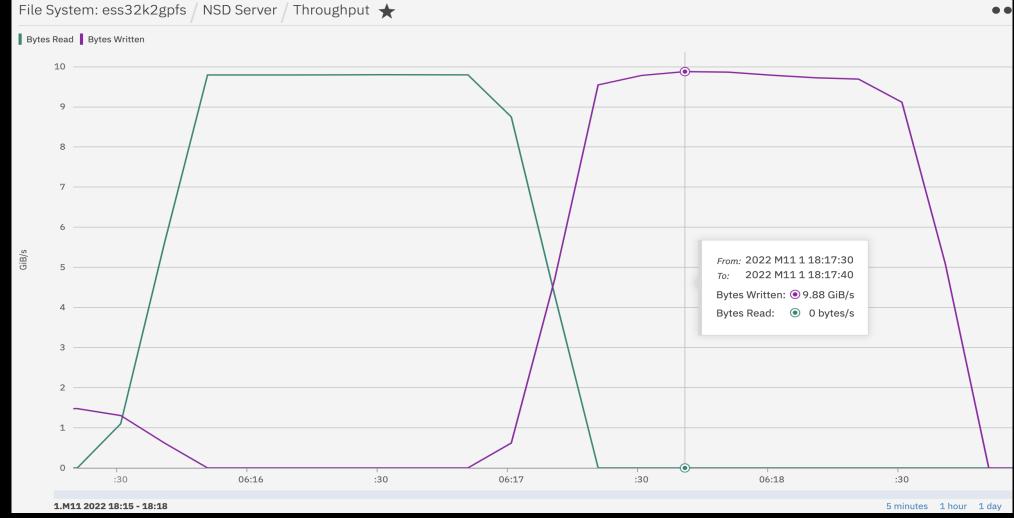
FIO Write Test:

fio.exe --name=fiotest --directory=\\ESS32KSMB\ess32kshare\ --size=4G --rw=write --bs=4M --numjobs=24 --ioengine=windowsaio --iodepth=16 --group_reporting --runtime=60 --ramp_time=30 --direct=1

Test	Numjobs	xfersize	Avg MiB/s Write	Avg IOPs Write
Single Client SMB2 TCP	24	4M	2615	616
Single Client SMB3 Multi-Channel TCP	24	4M	<mark>9840</mark>	2519
Single Client SMB3 Direct RDMA	24	4M	<mark>9998</mark>	2499
Multi-Client SMB3 Direct RDMA	24	4M	TBD	TBD
Single Scale Client RDMA	24	4M	3039	685

FIO Read Test:

fio.exe --name=fiotest --directory=\\ESS32KSMB\ess32kshare\ --size=4G --rw=read --bs=4M --numjobs=24 --ioengine=windowsaio --iodepth=16 --group_reporting --runtime=60 --ramp_time=30 --direct=1


Test	Numjobs	xfersize	Avg MiB/s Read	Avg IOPs Read
Single Client SMB2 TCP	24	4M	3390	847
Single Client SMB3 Multi-Channel TCP	24	4M	10600	2718
Single Client SMB3 Direct RDMA	24	4M	11000	2816
Multi-Client SMB3 Direct RDMA	24	4M	<mark>19598</mark>	4898
Single Scale Client	24	4M	4972	1242

ESS Backend

FIO Test:

fio.exe --name=fiotest --directory=\\ESS32KSMB\ess32kshare\ --size=100G --rw=read --bs=4M --numjobs=24 --ioengine=windowsaio --iodepth=16 --group_reporting --runtime=60 --ramp_time=30 --direct=1

ESS Backend

FIO Test:

fio.exe --name=fiotest --directory=\\ESS32KSMB\ess32kshare\d1 --size=100G --rw=read --bs=4M --numjobs=24 --ioengine=windowsaio --iodepth=16 --group_reporting --runtime=60 --ramp_time=30 --direct=1

Recommended Deployment

NSD+Tuxera Server Recommendations

- Dual CPU (2x 16C)
- 128GB+ Memory
- 2x Single port CX-6 HDR

Data Sources Edge environments Datacenter Windows 10 Storage Scale Desktop \\SMBServer\SMBShare TUXERA Fusion IB**SMB Server** or IBM ESS3500 RoCE or **TUXERA** Fusion TCP/IP *ESS Capacity SMB Server varies depending on drive quantity and capacity OS X Desktop **Notes** Utilizing ESS will provide the best performance, integration, hardware utilization, support, features and functions (ie. GUI, APIs, snapshots, monitoring, automation, etc...) Using external Tuxera Fusion SMB servers is the best and most supported deployment with HA, DGX or Other AI/ML performance optimization, and dedicated hardware.

#