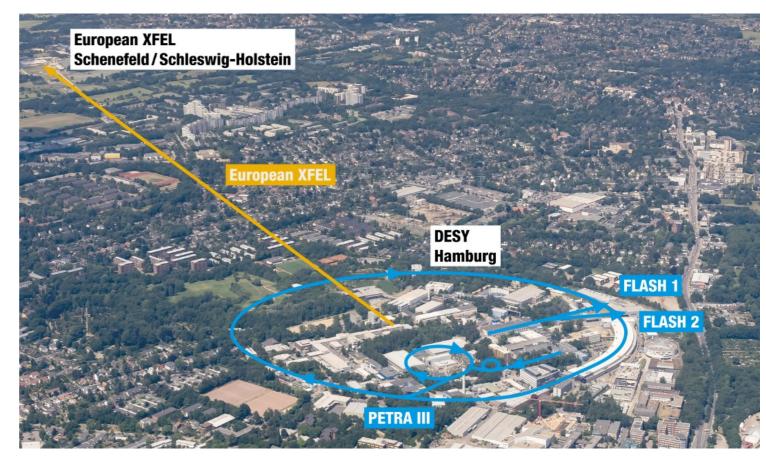


<u>Stefan Dietrich</u>, Martin Gasthuber, Jürgen Hannnappel, Janusz Malka (XFEL) Hamburg, 2023-05-22

HELMHOLTZ

Agenda


- 01 Introduction & reasons for ESS
- 02 Experiences with ESS over the years
- 03 Maxwell Compute Cluster & InfiniBand Fabric
- 04 ESS 3500 Performance

Deutsches Elektronen-Synchrotron DESY

Large-scale facilities for science

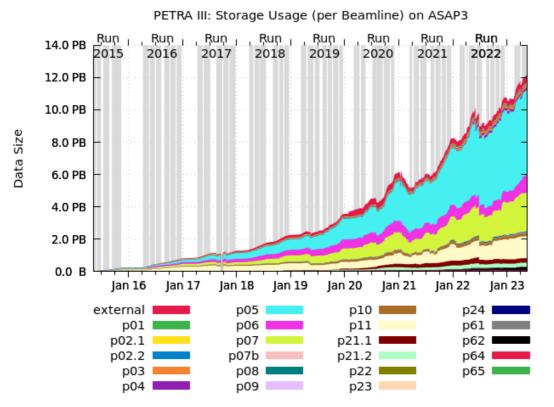
One of world's leading accelerator centers

- Scientific main areas
 - Accelerators
 - Photon Science
 - Particle Physics
 - Astroparticle Physics (DESY Zeuthen)
- Approx. 3000 employees, incl. 1300 scientists
- ~3000 guest scientists every year
- Accelerators: X-ray

ESS Deployments

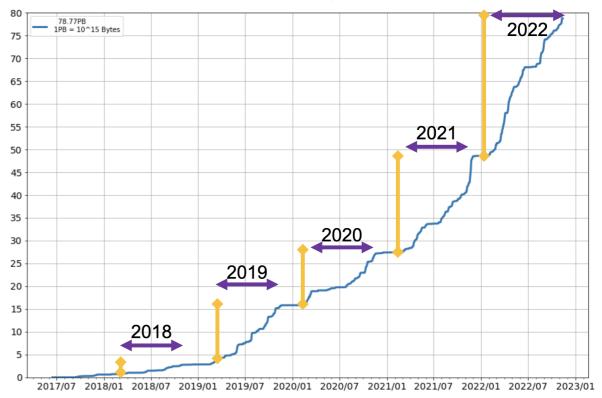
History

- DESY is not a traditional HPC site
 - ...but high demand for HPC-like resources
- Since 2015: continues increasing demand for storage and computational resource
- IBM Spectrum Scale with Native RAID (GNR) for data storage
 - IBM Elastic Storage Server (ESS)
 - No "traditional" GPFS in operation!
- Talk will focus on experiences over the years
 - For details about scientific challenges, check out older GPFSUG presentations


ESS in Operation

- GPFS as initial landing point for Scientific Data
 - Generated by detectors installed at the accelerators
 → PETRA III, FLASH, European XFEL
 - High data rate & volume: ~87 PiB deployed
- Started in 2015 with IBM ESS
- All ESS generations at some point in operation
 - 0th gen: IBM GSS 24
 - 1st gen: GS2, GL4/6
 - 2nd gen: GS4S, GL4/6S
 - 3rd gen: 3000, 3200, 3500, 5000

Data Volume


DESY – PETRA III

• Active capacity: ~15 PiB

European XFEL

• Active capacity: ~45 PiB, Plot includes archive

Date

Raw Data Generated at European XFEL Instruments

DESY. | Experiences with ESS | Stefan Dietrich | 2023-05-22

Why GNR?

Why Spectrum Scale with Native RAID?

- Software RAID better rebuild times
 - Slow and long rebuilds for RAID6
 → increased chance for data loss
 - No huge performance degradation during rebuilds
- End-to-end checksum for data integrity
- Worked well for us over the last ~8 years
 - No (known) data loss due to faulty hardware, bit rot etc.
 - 8+3p for HDD for enclosure fault tolerance, 8+2p for SSD/NVMe
 - Similar hardware without GNR: Experienced data loss incidents
- An extreme example: out of warranty GL4 in (non-productive) operation

ESS Deployments over the years

Continues growth and removal of old hardware

- Storage expansion: Remove & add new NSDs to existing filesystems •
 - Usually in operation during low activity, without QoS to migrate as fast as possible, full restripe afterwards
 - except: on-disk format migration between GPFS 4.2.3 \rightarrow 5.0
- Handling different performance characteristics •
 - e.g. NSD from ESS 5000 faster than GL6S in single pool
 - Adjusting # of NSDs more NSDs for newer generations
- Interoperability between ESS generations important •
 - Worked well for us with 2^{nd/}3rd generation
 - Problem with 1st gen: discontinued Big Endian support \rightarrow Cluster stuck on old ESS release, no new features

mmlsfs all -V | grep Original 15.01(4.2.0.0)17.00(4.2.3.0)20.01(5.0.2.0)20.01(5.0.2.0)21.00(5.0.3.0)23.00(5.0.5.0)27.00(5.1.3.0)27.00(5.1.3.0)27.00(5.1.3.0)# mmvdisk vs list fs0 d8 fs0 BB013, BB014, BB015, BB016 fs0 d0 fs0 BB017, BB018 fs0_d10 fs0 BB017, BB018 fs0_d2 fs0 BB019, BB020, BB021, BB022 fs0_d3 fs0 BB019, BB020, BB021, BB022 fs0 d11 fs0 BB023, BB024, BB025, BB026 fs0 d1 fs0 BB023, BB024, BB025, BB027 fs0 d5 fs0 BB031-32 fs0 d6 fs0 BB031-32 fs0_d7 fs0 BB031-32 fs0 d9 fs0 BB031-32 fs0 d12 1 fs0 BB033-34 fs0 d12 2 fs0 BB033-34 fs0_d13_1 fs0 BB033-34 fs0 d13 2 fs0 BB033-34

Site Integration

Integration into existing site infrastructure

- No green field existing network infrastructure
 - ESS deployment sometimes cumbersome, dedicated networks for BMC & deployment
- xCAT \rightarrow Ansible for ESS updates: Less manual work, partially buggy
 - XFEL: 1 EMS node to deploy 4 clusters
- Integration into Icinga for central service- and hardware monitoring
 - Running NRPE/Icinga Agent on ESS systems for monitoring
 - RHEL Slim ISO includes relevant dependencies
 → I guess we are not the only site installing software on ESS ;-)
- Extensive use of Spectrum Scale Bridge for Grafana
 - Visualization of GPFS performance metrics

OK Jan 4	GPFS Deadlock OK - No deadlock detected
WARNING 19:45	HW - GPFS Declustered Array DECLUSTEREDARRAY WARNING - DA DA1 in RG nsd-gl22 current task: rebuild-2r (42%)
OK Jan 4	HW - GPFS Enclosure ENCLOSURE OK - 390 healthy enclosure components
CRITICAL 19:46	<pre>HW - GPFS Physical Disks PDISK CRITICAL - 1 critical disk(s) of 278 disk(s). See list below</pre>
CRITICAL since 19:46 Service: HW - GPFS Physical Disks !	
Comment Source Comment Acknowledge	
Plugin Output	

CRITICAL: PDisk els41 [DA1] in RG nsd-gl22 is failing/draining

Maxwell Compute Cluster

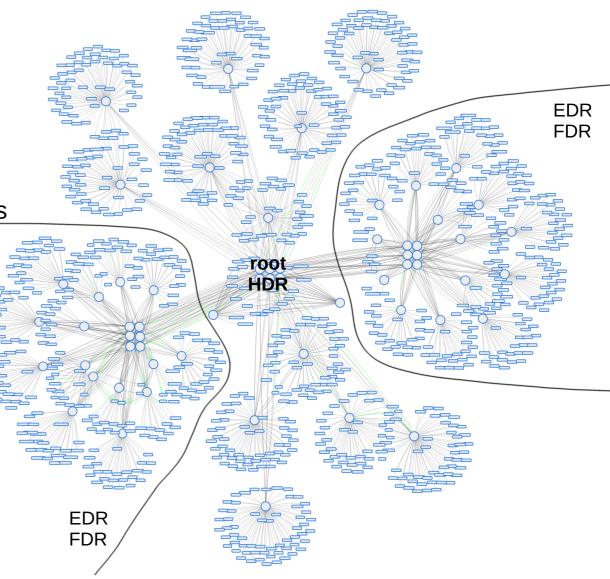
HPC-like Platform for Photon Science Data Analysis

DESY is not a traditional HPC side

- Maxwell Computer Cluster
 - ~1.000 compute nodes, 544 TB RAM,
 ~42.700 physical cores, ~200 GPU nodes
- HPC characteristics
 - Fast Cluster Filesystems: GPFS & BeeGFS
 - Fast Interconnect: InfiniBand
 - Vast compute resources: Big CPU & GPU resources
- Variety of Photon Science communities, e.g.
 - Data analysis of PETRA III, FLASH, XFEL
 - Accelerator & PETRA IV simulation
 - Plasma Wakefield simulation

Scheduling

- Multiple interaction possibilities for users
 - Interactive login nodes for users
 - Slurm for batch jobs
 - Jupyterhub

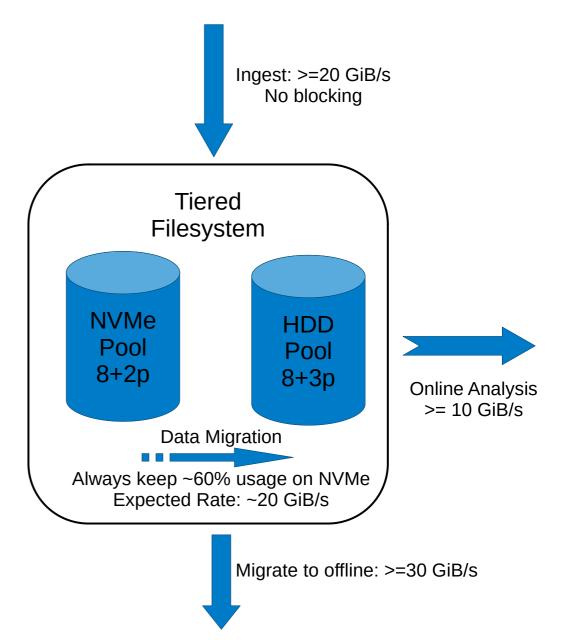


- Core- and group specific compute resources
 - Implemented as partitions in Slurm
 - Buy-in model for groups
 - User can run jobs on group specific resources, but might be preempted

Maxwell InfiniBand Fabric

Growing and upgrading through the years

- All compute- and storage nodes use the Maxwell InfiniBand fabric
- Continues growth and new technology required changes over the years
 - Transition: 2 layer FDR → 3 layer FDR/EDR → 2 layer HDR
- Slow phase out of FDR/EDR with removal of old compute/storage nodes
- Challenging multiple recablings required
 - Aging FDR cables causing performance issues
- Upgrade to NDR with new OSFP connectors?



ESS 3500 Performance

Benchmarking FLASH systems is hard

New Burst Buffer for European XFEL

- 2xESS 3500
 - Performance Model: 24x 30 TiB NVMe
 - Capacity Model: 408x 10TB HDD
 - 2x Dual Port HDR HCA per canister
- Burst buffer as tiered filesystem
 - Initial placement on NVMe pool
 - Migration between tiers should be fast and not interfere with data acquisition
- Initial performance impression
 - 50 GB/s read far away from 90 GB/s+ read
 - Erratic, results not reproducible

ESS 3500 Performance

Benchmarking FLASH systems is hard

Tuning and debugging

- ESS 3500 Performance was too low and erratic
 - ~2.5 days of tuning with Olaf Weiser from IBM
- NVMe \rightarrow HDD Drain Tuning
 - Additional client tuning (workerThreads, pitWorkerThreadsPerNode)
- NVMe Tuning
 - Erratic behavior: Same test, different results
 - TRIM: No change, NVMe busy after TRIM finished
 - Preconditioning drives to get into "steady state"
 - Upgrade from 2 → 4 HCAs, each with 1 port connected
 → overcome PCIe 4 x16 limit of ~30 GiB/s
- End result: Workload now running fine DESY. | Experiences with ESS | Stefan Dietrich | 2023-05-22

Page 12

- Using ESS worked well for us in the last ~8 years
 - Would most likely choose a GNR system again, if started today
 - Deployment needs more bug fixing
- Faster systems & networks, but harder to get performance
 - FLASH controllers add another layer of in-transparency
- Important to have good support

Thank you

Contact

Deutsches Elektronen-Synchrotron DESY Stefan Dietrich IT stefan.dietrich@desy.de

www.desy.de