
Terraform and Ansible
Deep Dive

Spectrum Scale German User Meeting 2022

Cologne, Germany – October 20th, 2022

Achim Christ (IBM)

Muthu Muthiah (IBM)



Disclaimer
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Agenda 

▪ Benefits & Use Cases

▪ Getting started with Ansible

▪ Getting started with

Spectrum Scale Ansible roles

▪ Getting started with Terraform and

Spectrum Scale templates

▪ Sample scenarios in more detail
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▪ Manage storage as “just another service”

→  Without vendor lock-in

▪ Rapidly spin up test / demo / enablement clusters

▪ Dynamically scale-up / scale-down clusters 

→  Reproducibility

▪ Keep (multiple) environments consistent

→  Prevent “configuration drift”

▪ Disaster Recovery / Cyber Resiliency

→  Revert to well-defined state (with confidence)

Benefits & Use Cases

[source]

https://www.ansible.com/blog/terraforming-clouds-with-ansible
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▪ End-to-end deployment in 10 minutes or less

▪ Best practices encoded into process

– Availability Zone → Failure Group → Quorum

– Protocol node tuning

– …

▪ Advantages of Infrastructure as Code

Clearly defined state – ‘Single Source of Truth’

Combine with version control – ‘GitOps’

Ability to version / roll-back changes

…

Key Performance Metrics

# nodes Type Duration

1 QEMU / KVM ~ 9 mins.

3 QEMU / KVM ~ 10 mins.

3 (+ CES) QEMU / KVM ~ 13 mins.

20 AWS ~ 40 mins.

40 AWS ~ 60 mins.

64 AWS ~ 50 - 90 mins.

https://en.wikipedia.org/wiki/Single_source_of_truth
https://www.redhat.com/en/topics/devops/what-is-gitops
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▪ Automation framework (language)

▪ Open source (GPL 3.0 licensed): GitHub

▪ Collection of CLI commands, optional GUI (AWX)

▪ Basis for Red Hat Ansible Automation Platform

▪ Initial release 2012

▪ Written in Python

▪ Ansible Inc. acquired by Red Hat in 2015

▪ Widely used across IBM portfolio [Galaxy]

What is Red Hat Ansible?

https://github.com/ansible/ansible/
https://www.ansible.com/products/automation-platform
https://galaxy.ansible.com/ibm
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▪ Control node

▪ Managed host (target node)

▪ Playbook

▪ Inventory

Ansible Terminology
# ssh root@server1
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▪ Control node

▪ Managed host (target node)

▪ Playbook

▪ Inventory

Ansible Terminology myAnsibleProject/

├── inventory.ini

└── playbook.yml

[mygroup]

server1

server2

server3

Inventory

---

- hosts: mygroup

tasks:

- name: Install nginx

package:

name: nginx

state: present

Playbook
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▪ pip install ansible [link]

▪ ssh-copy-id root@server1

▪ vim inventory.ini

▪ vim playbook.yml

▪ ansible-playbook \ [link]

–i inventory.ini \

playbook.yml

Getting Started with Ansible

→ https://github.com/acch/ansible-boilerplate

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html
https://github.com/acch/ansible-boilerplate
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Spectrum Scale ↔ Ansible Structure

Install

Configure …..GUI

Proactive 

Services

(Callhome)

BDA

(HDFS)
AFMCore file system

Update

Protocols

→  https://github.com/ibm/ibm-spectrum-scale-install-infra/tree/main

roles/

├── core_prepare

├── core_install

├── core_configure

├── core_verify

└── core_upgrade

roles/

├── callhome_*

├── core_*

├── ece_*

├── fal_*

├── gui_*

├── hdfs_*

├── nfs_*

├── obj_*

├── perfmon_*

└── smb_*

https://github.com/ibm/ibm-spectrum-scale-install-infra/tree/main
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▪ git clone \ [link]
-b main \

https://github.com/ibm/ibm-spectrum-scale-install-infra.git \

collections/ansible_collections/ibm/spectrum_scale

▪ vim playbook.yml

▪ Future:
ansible-galaxy collection install ibm.spectrum_scale

Getting started with Spectrum Scale Ansible roles

---

- hosts: all

roles:

- ibm.spectrum_scale.core_prepare

- ibm.spectrum_scale.core_install

- ibm.spectrum_scale.core_configure

- ibm.spectrum_scale.core_verify

vars:

scale_install_repository_url: >-

http://webserver.local/gpfs_rpms/

scale_cluster_clustername: >-

mycluster.local

scale_storage:

filesystem: gpfs01

disks:

- device: /dev/vdb

servers: localhost

→  https://github.com/ibm/ibm-spectrum-scale-install-infra/tree/main#readme

https://github.com/ibm/ibm-spectrum-scale-install-infra/tree/main#installation-instructions
https://github.com/ibm/ibm-spectrum-scale-install-infra/tree/main#readme
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▪ What nodes to work on

▪ What to do

Batteries Included: Installation Toolkit

# /usr/lpp/mmfs/*/ansible-toolkit/spectrumscale -h

usage: spectrumscale [-h] [-v] [--version]

{setup,node,config,nsd,filesystem,callhome,

fileauditlogging,enable,disable,install,deploy,

upgrade}

positional arguments:

setup               …

node                …

config              …

nsd …

filesystem          …

callhome …

fileauditlogging …

enable              … 

disable             …

install             …

deploy              …

upgrade             …

optional arguments:

-h, --help            …

-v, --verbose         …

--version             …

For usage of sub-commands, specify a command

followed by -h or --help
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▪ Infrastructure resource provisioning

▪ Open source (MPL 2.0 licensed): GitHub

▪ Terraform CLI

▪ Terraform Cloud

▪ Terraform Enterprise

▪ Initial release 2014

▪ Written in Go

▪ Extensive list of (cloud) infrastructure providers

What is HashiCorp Terraform?

https://github.com/hashicorp/terraform
https://www.terraform.io/
https://cloud.hashicorp.com/products/terraform
https://www.hashicorp.com/products/terraform
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▪ Provider

▪ Resource

▪ Module

▪ Data Source 

▪ Template

▪ State

Terraform Terminology
# aws ec2 ls
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Getting started with Terraform

# aws configure

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE

AWS Secret Access Key [None]: wJalrX…EXAMPLEKEY

Default region name [None]: eu-central-1

Default output format [None]:

▪ Install Terraform

– yum install -y yum-utils

– yum-config-manager --add-repo 

https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo

– yum -y install terraform

▪ Install and configure AWS CLI

– curl "https://awscli.amazonaws.com/awscli-exe-linux-

x86_64.zip" -o "awscliv2.zip“ && unzip awscliv2.zip

sudo ./aws/install [link]

– aws configure [link]

▪ Define Terraform Configuration (template)

– vim template.tf

▪ Execute Terraform

– terraform init [link]

– terraform plan [link]

– terraform apply [link]

– terraform destroy [link]

#  yum -y install terraform
Updating Subscription Management repositories.

Red Hat Enterprise Linux 8 for x86  37 kB/s | 2.4 kB     00:00

Red Hat Enterprise Linux 8 for x86  44 kB/s | 2.8 kB     00:00

Dependencies resolved.

===================================================================

Package         Architecture Version        Repository       Size

===================================================================

Installing:

terraform       x86_64       1.3.2-1        hashicorp 13 M

Transaction Summary

===================================================================

Install  1 Package

Total download size: 13 M

Installed size: 58 M

https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/reference/configure/index.html
https://www.terraform.io/cli/commands/init
https://www.terraform.io/cli/commands/plan
https://www.terraform.io/cli/commands/apply
https://www.terraform.io/cli/commands/destroy
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Getting started with Terraform

# cat main.tf# cat provider.tf
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Getting started with Terraform
# terraform init

The terraform init command performs the 

following:

▪ Initializes the directory containing Terraform 

configuration files (templates)

▪ Initialize Modules: All module blocks defined 

in the Terraform configuration files (templates) 

are retrieved and initialized

▪ Initialize Backend: Initializes where Terraform 

State files are stored (local file system/S3 

Bucket etc.)

▪ Initialize Provider Plugins: All Terraform 

Plugins whose providers are referenced in the 

Terraform configuration files (templates) either 

directly or indirectly are retrieved and installed
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Getting started with Terraform

# terraform plan

The terraform plan command:

▪ Allows a preview the actions Terraform will take to 

modify the infrastructure

▪ The output uses the following format

+ For resources that will be newly created

- For resources that will be deleted

~ For resources that will be modified

▪ It also provides the ability to save the plan for later 

input into the terraform apply command
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Getting started with Terraform
# terraform apply

The terraform apply command:

▪ Executes the changes defined by the Terraform 

configuration (template) to create, modify and 

destroy resources

▪ Lock the Terraform project state, so that no other 

instances of Terraform will be able to manipulate the 

resources at the same time

▪ Create a plan and prompt for approval

▪ Execute steps in the plan using the providers that 

were previously installed during terraform init

▪ Update project state file with the current state of all 

provisioned resources

▪ Unlock the state file

▪ Print out a report of all changes that were made

▪ Print out any output values defined in configuration
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Spectrum Scale ↔ Terraform Structure
→  https://github.com/ibm/ibm-spectrum-scale-cloud-install

The Spectrum Scale Terraform Git Repository consists of:

▪ Templates to provision the required infrastructure on various public clouds

– AWS

– IBM Cloud

– Azure (PoC Only)

– GCP (PoC only available in master branch) 

▪ Component Templates to provision (as configured)

– Virtual Private Cloud (VPC)

– Bastion Host

– Storage and Compute Instances

▪ Templates to provision all other required Cloud resources

– Networking configuration (VPC Private and Public Subnets as needed)

– Storage (EBS Volumes for use as NSD) 

– Security configuration (Security Groups, Identity and Access Management 

configuration)

https://github.com/ibm/ibm-spectrum-scale-cloud-install
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▪ Terraform provisions all required resources on the cloud and 

stores the information into a state file

▪ Option to generate Ansible inventory from Terraform state

▪ Option to execute Ansible from Terraform

▪ Alternative: start Terraform from Ansible

– community.general.terraform module [link]

– Dynamic inventory plugin [link]

Spectrum Scale Terraform ↔ Ansible Integration

- name: Deploy Terraform Instance

community.general.terraform:

project_path: /path/to/tf_build

state: present

register: deployed_tf

https://docs.ansible.com/ansible/latest/collections/community/general/terraform_module.html
https://www.ansible.com/blog/configuring-an-aws-dynamic-inventory-with-automation-controller
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▪ University & research customer @ Switzerland

▪ Goal

– Efficiently deploy & manage large

protocol clusters consistently

– Refresh IBM Power server hardware

▪ Challenges

– 12 protocol nodes (SMB & NFS) with AD integration

– Complex network / firewall / hardening rules

– Historically grown:

slightly different configuration on each node

– Migrate from Big Endian → Little Endian

▪ Solution

– IBM Power 9 servers

– Initialization & OS installation through xCAT

– OS configuration (security, compliance) through Ansible

– Spectrum Scale installation through Ansible

– Spectrum Scale configuration through

▪ mmaddnode

▪ tdbdump / tdbrestore

Sample Scenario I (on-prem)

IBM Power servers

xCAT

Ansible

ibm/ibm-spectrum-scale-install-infra

1

2

3

4
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▪ Use xCAT for provisioning RHEL on IBM Power

– Use (node) groups

– Kickstart template / custom partitioning (script)

– Custom (post-)script to inject SSH key

▪ All post OS-installation configuration: Ansible playbook(s)

– Custom hardening, compliance

– Admin user configuration

– Firewall configuration

– rhel-system-roles

▪ Spectrum Scale package installation using Scale roles

▪ Subsequent node configuration:

– `mmaddnode` | `mmsdrrestore`

Sample Scenario I (on-prem)

IBM Power servers

xCAT

Ansible

ibm/ibm-spectrum-scale-install-infra

1

2

3

4

- ibm.spectrum_scale.core_prepare

- ibm.spectrum_scale.core_install

- ibm.spectrum_scale.core_verify

- ibm.spectrum_scale.nfs_prepare

- ibm.spectrum_scale.nfs_install

- ibm.spectrum_scale.nfs_verify

- ibm.spectrum_scale.smb_prepare

- ibm.spectrum_scale.smb_install

- ibm.spectrum_scale.smb_verify
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▪ Public sector customer @ United Kingdom

▪ Goal

– Dynamically spin up / down self-contained

application instances on AWS Cloud

– Terminate instances EOB to save cost

▪ Challenges

– Nodes join & leave clusters “at will”

– Spectrum Scale doesn’t react well to

dynamically changing IPs

▪ Solution

– Two groups of EC2 instances:

▪ Permanent (Quorum, NSD Servers, GUI)

▪ Temporary (NSD Clients)

– OS installation & configuration via custom AMIs

– Spectrum Scale installation through Ansible

– Spectrum Scale configuration through

▪ systemd service units

▪ mmdelnode / mmaddnode

Sample Scenario II (public cloud) 

Amazon Machine Image (AMI)

Ansible

ibm/ibm-spectrum-scale-install-infra

systemd

1

2

3

4
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▪ Use systemd service unit
to run `mmdelnode` upon shutdown

– Considered `mmsdrrestore`

– Considered `mmchnode --spec-file`

▪ “Stale” nodes remain after crash

– Need to reconcile cluster config (housekeeping)

▪ Firewall configuration

– firewalld module [link]

– Firewall role (Linux System Roles)

▪ rhel-system-roles [link]

▪ Don’t forget `permanent: yes`

▪ Optimization: pre-built kernel extension → pre-built AMI

Sample Scenario II (public cloud) 

[Unit]

Description=...

[Service]

Type=oneshot

RemainAfterExit=true

ExecStop=/usr/local/bin/script.sh

[Install]

WantedBy=multi-user.target

Amazon Machine Image (AMI)

Ansible

ibm/ibm-spectrum-scale-install-infra

systemd

1

2

3

4

https://docs.ansible.com/ansible/latest/collections/ansible/posix/firewalld_module.html
https://access.redhat.com/articles/3050101
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▪ Each automation use case is different

▪ DevOps / Infrastructure as Code is a process, not a tool

▪ Tools make certain things easy (sweet spot)

▪ “If your only tool is a hammer

then every problem looks like a nail”

▪ IBM evaluated different options,

purposely decided on best fit

▪ IBM provides integration points for Spectrum Scale

… at various levels …

▪ Automation requires investment

▪ Automation is “all or nothing” (kind of)

– Requires commitment

▪ Automation is never “done”

Summary & Lessons Learned

Time
P

ro
d
u
c
tiv

ity

How long does it take?

With

automation

Without

automation



Thank you for using 
IBM Spectrum Scale!


