
Terraform and Ansible
Deep Dive

Spectrum Scale German User Meeting 2022

Cologne, Germany – October 20th, 2022

Achim Christ (IBM)

Muthu Muthiah (IBM)

Disclaimer

IBM's statements regarding its plans, directions, and intent are subject to change or withdrawal without notice

at IBM's sole discretion. Information regarding potential future products is intended to outline our general

product direction and it should not be relied on in making a purchasing decision. The information mentioned

regarding potential future products is not a commitment, promise, or legal obligation to deliver any material,

code, or functionality. The development, release, and timing of any future features or functionality described for

our products remains at our sole discretion.

IBM reserves the right to change product specifications and offerings at any time without notice. This

publication could include technical inaccuracies or typographical errors. References herein to IBM products

and services do not imply that IBM intends to make them available in all countries.

© 2022 IBM Corporation3

Agenda

▪ Benefits & Use Cases

▪ Getting started with Ansible

▪ Getting started with

Spectrum Scale Ansible roles

▪ Getting started with Terraform and

Spectrum Scale templates

▪ Sample scenarios in more detail

© 2022 IBM Corporation4

▪ Manage storage as “just another service”

→ Without vendor lock-in

▪ Rapidly spin up test / demo / enablement clusters

▪ Dynamically scale-up / scale-down clusters

→ Reproducibility

▪ Keep (multiple) environments consistent

→ Prevent “configuration drift”

▪ Disaster Recovery / Cyber Resiliency

→ Revert to well-defined state (with confidence)

Benefits & Use Cases

[source]

https://www.ansible.com/blog/terraforming-clouds-with-ansible

© 2022 IBM Corporation5

▪ End-to-end deployment in 10 minutes or less

▪ Best practices encoded into process

– Availability Zone → Failure Group → Quorum

– Protocol node tuning

– …

▪ Advantages of Infrastructure as Code

Clearly defined state – ‘Single Source of Truth’

Combine with version control – ‘GitOps’

Ability to version / roll-back changes

…

Key Performance Metrics

nodes Type Duration

1 QEMU / KVM ~ 9 mins.

3 QEMU / KVM ~ 10 mins.

3 (+ CES) QEMU / KVM ~ 13 mins.

20 AWS ~ 40 mins.

40 AWS ~ 60 mins.

64 AWS ~ 50 - 90 mins.

https://en.wikipedia.org/wiki/Single_source_of_truth
https://www.redhat.com/en/topics/devops/what-is-gitops

© 2022 IBM Corporation6

▪ Automation framework (language)

▪ Open source (GPL 3.0 licensed): GitHub

▪ Collection of CLI commands, optional GUI (AWX)

▪ Basis for Red Hat Ansible Automation Platform

▪ Initial release 2012

▪ Written in Python

▪ Ansible Inc. acquired by Red Hat in 2015

▪ Widely used across IBM portfolio [Galaxy]

What is Red Hat Ansible?

https://github.com/ansible/ansible/
https://www.ansible.com/products/automation-platform
https://galaxy.ansible.com/ibm

© 2022 IBM Corporation7

▪ Control node

▪ Managed host (target node)

▪ Playbook

▪ Inventory

Ansible Terminology
ssh root@server1

© 2022 IBM Corporation8

▪ Control node

▪ Managed host (target node)

▪ Playbook

▪ Inventory

Ansible Terminology myAnsibleProject/

├── inventory.ini

└── playbook.yml

[mygroup]

server1

server2

server3

Inventory

- hosts: mygroup

tasks:

- name: Install nginx

package:

name: nginx

state: present

Playbook

© 2022 IBM Corporation9

▪ pip install ansible [link]

▪ ssh-copy-id root@server1

▪ vim inventory.ini

▪ vim playbook.yml

▪ ansible-playbook \ [link]

–i inventory.ini \

playbook.yml

Getting Started with Ansible

→ https://github.com/acch/ansible-boilerplate

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html
https://github.com/acch/ansible-boilerplate

© 2022 IBM Corporation10

Spectrum Scale ↔ Ansible Structure

Install

Configure …..GUI

Proactive

Services

(Callhome)

BDA

(HDFS)
AFMCore file system

Update

Protocols

→ https://github.com/ibm/ibm-spectrum-scale-install-infra/tree/main

roles/

├── core_prepare

├── core_install

├── core_configure

├── core_verify

└── core_upgrade

roles/

├── callhome_*

├── core_*

├── ece_*

├── fal_*

├── gui_*

├── hdfs_*

├── nfs_*

├── obj_*

├── perfmon_*

└── smb_*

https://github.com/ibm/ibm-spectrum-scale-install-infra/tree/main

© 2022 IBM Corporation11

▪ git clone \ [link]
-b main \

https://github.com/ibm/ibm-spectrum-scale-install-infra.git \

collections/ansible_collections/ibm/spectrum_scale

▪ vim playbook.yml

▪ Future:
ansible-galaxy collection install ibm.spectrum_scale

Getting started with Spectrum Scale Ansible roles

- hosts: all

roles:

- ibm.spectrum_scale.core_prepare

- ibm.spectrum_scale.core_install

- ibm.spectrum_scale.core_configure

- ibm.spectrum_scale.core_verify

vars:

scale_install_repository_url: >-

http://webserver.local/gpfs_rpms/

scale_cluster_clustername: >-

mycluster.local

scale_storage:

filesystem: gpfs01

disks:

- device: /dev/vdb

servers: localhost

→ https://github.com/ibm/ibm-spectrum-scale-install-infra/tree/main#readme

https://github.com/ibm/ibm-spectrum-scale-install-infra/tree/main#installation-instructions
https://github.com/ibm/ibm-spectrum-scale-install-infra/tree/main#readme

© 2022 IBM Corporation12

▪ What nodes to work on

▪ What to do

Batteries Included: Installation Toolkit

/usr/lpp/mmfs/*/ansible-toolkit/spectrumscale -h

usage: spectrumscale [-h] [-v] [--version]

{setup,node,config,nsd,filesystem,callhome,

fileauditlogging,enable,disable,install,deploy,

upgrade}

positional arguments:

setup …

node …

config …

nsd …

filesystem …

callhome …

fileauditlogging …

enable …

disable …

install …

deploy …

upgrade …

optional arguments:

-h, --help …

-v, --verbose …

--version …

For usage of sub-commands, specify a command

followed by -h or --help

© 2022 IBM Corporation13

▪ Infrastructure resource provisioning

▪ Open source (MPL 2.0 licensed): GitHub

▪ Terraform CLI

▪ Terraform Cloud

▪ Terraform Enterprise

▪ Initial release 2014

▪ Written in Go

▪ Extensive list of (cloud) infrastructure providers

What is HashiCorp Terraform?

https://github.com/hashicorp/terraform
https://www.terraform.io/
https://cloud.hashicorp.com/products/terraform
https://www.hashicorp.com/products/terraform

© 2022 IBM Corporation14

▪ Provider

▪ Resource

▪ Module

▪ Data Source

▪ Template

▪ State

Terraform Terminology
aws ec2 ls

© 2022 IBM Corporation15

Getting started with Terraform

aws configure

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE

AWS Secret Access Key [None]: wJalrX…EXAMPLEKEY

Default region name [None]: eu-central-1

Default output format [None]:

▪ Install Terraform

– yum install -y yum-utils

– yum-config-manager --add-repo

https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo

– yum -y install terraform

▪ Install and configure AWS CLI

– curl "https://awscli.amazonaws.com/awscli-exe-linux-

x86_64.zip" -o "awscliv2.zip“ && unzip awscliv2.zip

sudo ./aws/install [link]

– aws configure [link]

▪ Define Terraform Configuration (template)

– vim template.tf

▪ Execute Terraform

– terraform init [link]

– terraform plan [link]

– terraform apply [link]

– terraform destroy [link]

yum -y install terraform
Updating Subscription Management repositories.

Red Hat Enterprise Linux 8 for x86 37 kB/s | 2.4 kB 00:00

Red Hat Enterprise Linux 8 for x86 44 kB/s | 2.8 kB 00:00

Dependencies resolved.

===

Package Architecture Version Repository Size

===

Installing:

terraform x86_64 1.3.2-1 hashicorp 13 M

Transaction Summary

===

Install 1 Package

Total download size: 13 M

Installed size: 58 M

https://rpm.releases.hashicorp.com/RHEL/hashicorp.repo
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/reference/configure/index.html
https://www.terraform.io/cli/commands/init
https://www.terraform.io/cli/commands/plan
https://www.terraform.io/cli/commands/apply
https://www.terraform.io/cli/commands/destroy

© 2022 IBM Corporation16

Getting started with Terraform

cat main.tf# cat provider.tf

© 2022 IBM Corporation17

Getting started with Terraform
terraform init

The terraform init command performs the

following:

▪ Initializes the directory containing Terraform

configuration files (templates)

▪ Initialize Modules: All module blocks defined

in the Terraform configuration files (templates)

are retrieved and initialized

▪ Initialize Backend: Initializes where Terraform

State files are stored (local file system/S3

Bucket etc.)

▪ Initialize Provider Plugins: All Terraform

Plugins whose providers are referenced in the

Terraform configuration files (templates) either

directly or indirectly are retrieved and installed

© 2022 IBM Corporation18

Getting started with Terraform

terraform plan

The terraform plan command:

▪ Allows a preview the actions Terraform will take to

modify the infrastructure

▪ The output uses the following format

+ For resources that will be newly created

- For resources that will be deleted

~ For resources that will be modified

▪ It also provides the ability to save the plan for later

input into the terraform apply command

© 2022 IBM Corporation19

Getting started with Terraform
terraform apply

The terraform apply command:

▪ Executes the changes defined by the Terraform

configuration (template) to create, modify and

destroy resources

▪ Lock the Terraform project state, so that no other

instances of Terraform will be able to manipulate the

resources at the same time

▪ Create a plan and prompt for approval

▪ Execute steps in the plan using the providers that

were previously installed during terraform init

▪ Update project state file with the current state of all

provisioned resources

▪ Unlock the state file

▪ Print out a report of all changes that were made

▪ Print out any output values defined in configuration

© 2022 IBM Corporation20

Spectrum Scale ↔ Terraform Structure
→ https://github.com/ibm/ibm-spectrum-scale-cloud-install

The Spectrum Scale Terraform Git Repository consists of:

▪ Templates to provision the required infrastructure on various public clouds

– AWS

– IBM Cloud

– Azure (PoC Only)

– GCP (PoC only available in master branch)

▪ Component Templates to provision (as configured)

– Virtual Private Cloud (VPC)

– Bastion Host

– Storage and Compute Instances

▪ Templates to provision all other required Cloud resources

– Networking configuration (VPC Private and Public Subnets as needed)

– Storage (EBS Volumes for use as NSD)

– Security configuration (Security Groups, Identity and Access Management

configuration)

https://github.com/ibm/ibm-spectrum-scale-cloud-install

© 2022 IBM Corporation21

▪ Terraform provisions all required resources on the cloud and

stores the information into a state file

▪ Option to generate Ansible inventory from Terraform state

▪ Option to execute Ansible from Terraform

▪ Alternative: start Terraform from Ansible

– community.general.terraform module [link]

– Dynamic inventory plugin [link]

Spectrum Scale Terraform ↔ Ansible Integration

- name: Deploy Terraform Instance

community.general.terraform:

project_path: /path/to/tf_build

state: present

register: deployed_tf

https://docs.ansible.com/ansible/latest/collections/community/general/terraform_module.html
https://www.ansible.com/blog/configuring-an-aws-dynamic-inventory-with-automation-controller

© 2022 IBM Corporation22

▪ University & research customer @ Switzerland

▪ Goal

– Efficiently deploy & manage large

protocol clusters consistently

– Refresh IBM Power server hardware

▪ Challenges

– 12 protocol nodes (SMB & NFS) with AD integration

– Complex network / firewall / hardening rules

– Historically grown:

slightly different configuration on each node

– Migrate from Big Endian → Little Endian

▪ Solution

– IBM Power 9 servers

– Initialization & OS installation through xCAT

– OS configuration (security, compliance) through Ansible

– Spectrum Scale installation through Ansible

– Spectrum Scale configuration through

▪ mmaddnode

▪ tdbdump / tdbrestore

Sample Scenario I (on-prem)

IBM Power servers

xCAT

Ansible

ibm/ibm-spectrum-scale-install-infra

1

2

3

4

© 2022 IBM Corporation23

▪ Use xCAT for provisioning RHEL on IBM Power

– Use (node) groups

– Kickstart template / custom partitioning (script)

– Custom (post-)script to inject SSH key

▪ All post OS-installation configuration: Ansible playbook(s)

– Custom hardening, compliance

– Admin user configuration

– Firewall configuration

– rhel-system-roles

▪ Spectrum Scale package installation using Scale roles

▪ Subsequent node configuration:

– `mmaddnode` | `mmsdrrestore`

Sample Scenario I (on-prem)

IBM Power servers

xCAT

Ansible

ibm/ibm-spectrum-scale-install-infra

1

2

3

4

- ibm.spectrum_scale.core_prepare

- ibm.spectrum_scale.core_install

- ibm.spectrum_scale.core_verify

- ibm.spectrum_scale.nfs_prepare

- ibm.spectrum_scale.nfs_install

- ibm.spectrum_scale.nfs_verify

- ibm.spectrum_scale.smb_prepare

- ibm.spectrum_scale.smb_install

- ibm.spectrum_scale.smb_verify

© 2022 IBM Corporation24

▪ Public sector customer @ United Kingdom

▪ Goal

– Dynamically spin up / down self-contained

application instances on AWS Cloud

– Terminate instances EOB to save cost

▪ Challenges

– Nodes join & leave clusters “at will”

– Spectrum Scale doesn’t react well to

dynamically changing IPs

▪ Solution

– Two groups of EC2 instances:

▪ Permanent (Quorum, NSD Servers, GUI)

▪ Temporary (NSD Clients)

– OS installation & configuration via custom AMIs

– Spectrum Scale installation through Ansible

– Spectrum Scale configuration through

▪ systemd service units

▪ mmdelnode / mmaddnode

Sample Scenario II (public cloud)

Amazon Machine Image (AMI)

Ansible

ibm/ibm-spectrum-scale-install-infra

systemd

1

2

3

4

© 2022 IBM Corporation25

▪ Use systemd service unit
to run `mmdelnode` upon shutdown

– Considered `mmsdrrestore`

– Considered `mmchnode --spec-file`

▪ “Stale” nodes remain after crash

– Need to reconcile cluster config (housekeeping)

▪ Firewall configuration

– firewalld module [link]

– Firewall role (Linux System Roles)

▪ rhel-system-roles [link]

▪ Don’t forget `permanent: yes`

▪ Optimization: pre-built kernel extension → pre-built AMI

Sample Scenario II (public cloud)

[Unit]

Description=...

[Service]

Type=oneshot

RemainAfterExit=true

ExecStop=/usr/local/bin/script.sh

[Install]

WantedBy=multi-user.target

Amazon Machine Image (AMI)

Ansible

ibm/ibm-spectrum-scale-install-infra

systemd

1

2

3

4

https://docs.ansible.com/ansible/latest/collections/ansible/posix/firewalld_module.html
https://access.redhat.com/articles/3050101

© 2022 IBM Corporation26

▪ Each automation use case is different

▪ DevOps / Infrastructure as Code is a process, not a tool

▪ Tools make certain things easy (sweet spot)

▪ “If your only tool is a hammer

then every problem looks like a nail”

▪ IBM evaluated different options,

purposely decided on best fit

▪ IBM provides integration points for Spectrum Scale

… at various levels …

▪ Automation requires investment

▪ Automation is “all or nothing” (kind of)

– Requires commitment

▪ Automation is never “done”

Summary & Lessons Learned

Time
P

ro
d
u
c
tiv

ity

How long does it take?

With

automation

Without

automation

Thank you for using
IBM Spectrum Scale!

