
Spectrum Scale

Episode 19 (Version 3):

Spectrum Scale
Performance updates

Spectrum Scale Expert Talks

Join our conversation:

www.spectrumscaleug.org/join

Show notes:

www.spectrumscaleug.org/experttalks

http://www.spectrumscaleug.org/join
http://www.spectrumscaleug.org/experttalks

About the user group

• Independent, work with IBM to develop events

• Not a replacement for PMR!

• Email and Slack community

• https://www.spectrumscaleug.org/join

#SSUG

https://www.spectrumscaleug.org/join

We are …

Current User Group Leads

• Paul Tomlinson (UK)

• Kristy Kallback-Rose (USA)

• Bob Oesterlin (USA)

#SSUG

Former User Group Leads

• Simon Thompson (UK)

• Bill Anderson (USA)

• Chris Schlipalius (Australia)

Check https://www.spectrumscaleug.org/experttalks
for charts, show notes and upcoming talks

• Past talks:

– 001: What is new in Spectrum Scale 5.0.5?

– 002: Best practices for building a stretched cluster

– 003: Strategy update

– 004: Update on performance enhancements in Spectrum Scale
(file create, MMAP, direct IO, ESS 5000)

– 005: Update on functional enhancements in Spectrum Scale
(inode management, vCPU scaling, NUMA considerations)

– 006: Persistent Storage for Kubernetes and OpenShift
environments

– 007: Manage the lifecycle of your files using the policy engine

– 008: Multi-node scaling of AI workloads using Nvidia DGX,
OpenShift and Spectrum Scale

– 009: Continental: Deep Thought – An AI Project for Autonomous
Driving Development

– 010: Data Accelerator for Analytics and AI (DAAA)

– 011: What is new in Spectrum Scale 5.1.0?

– 012: Lenovo - Spectrum Scale and NVMe Storage

– 013:Event driven data management and security using Spectrum
Scale Clustered Watch Folder and File Audit Logging

– 014: What is new in Spectrum Scale 5.1.1?

– 015: IBM Spectrum Scale Container Native Storage Access

– 016: What is new in Spectrum Scale 5.1.2?

– 017: Multiple Connections over TCP (MCOT)

– 018: NVIDIA GPU Direct Storage with IBM Spectrum Scale

• This talk

– 019: Spectrum Scale Performance Improvements

https://www.spectrumscaleug.org/experttalks

Speakers

• John Lewars

• Jay Vaddi

• Loads of thanks to Olaf Weiser and Pidad D’Souza!!!! (IBM)

Spectrum Scale
Disclaimer

IBM's statements regarding its plans, directions, and intent are subject to change or withdrawal without notice

at IBM's sole discretion. Information regarding potential future products is intended to outline our general

product direction and it should not be relied on in making a purchasing decision. The information mentioned

regarding potential future products is not a commitment, promise, or legal obligation to deliver any material,

code, or functionality. The development, release, and timing of any future features or functionality described for

our products remains at our sole discretion.

IBM reserves the right to change product specifications and offerings at any time without notice. This

publication could include technical inaccuracies or typographical errors. References herein to IBM products

and services do not imply that IBM intends to make them available in all countries.

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2022 IBM Corporation

Spectrum Scale
Agenda

• io500 Related Work

• Prefetch Performance Enhancements

• TRIM

• Inode Allocation Details

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2022 IBM Corporation

Spectrum Scale

IO500 Related Work

IBM Spectrum Scale / Spectrum Scale User Group – What’s new with 5.0.5 / © 2020 IBM Corporation

Spectrum Scale
io500 Work and Plan
• The io500 benchmark suite has received an increasing amount of focus in recent years and

now provides an important set of performance metrics that the Spectrum Scale Research and
Development teams are working on.

• One of the goals of io500 is to measure ‘hard’ workloads to determine the worst possible
performance that may be achieved across all possible I/O patterns.

• By improving the performance of the ‘hard’ io500 benchmarks, we expect to improve the
performance of challenging modern workloads, following this plan:

1. Focus on the lowest performing benchmarks, determine bottlenecks, and then apply existing
tuning parameters to improve performance.

2. Develop new tuning parameters/hints that allow us to target focus workloads.

3. Improve heuristics so that we can automatically adapt to workloads without specific tuning
parameters or hints so that future runs of the benchmark are able to achieve optimal
performance without explicit hints/tuning.

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2022 IBM Corporation

Spectrum ScaleSC21 io500 Submission on ESS3200 System (1/2)
IBM has submitted an SC21 Ten Node io500 submission with a total score of 68.8, which placed us
at number 28 in the latest published ten node list (SC1 list: https://io500.org/list/sc21/ten)

Details of Ten Node io500 submission:

2x ESS 3200 Building Blocks, 2 servers/canisters per BB with 8MB Blocksize File System:
ESS 6.1.1 (RHEL 8.2) + Spectrum Scale upgraded to 5.1.2 on all canisters
Four HDR-IB links per canister
Single socket 48-core processor per canister
24x Samsung NVMe Drives (shared across both canisters in each BB)

10x Lenovo AMD clients:
Spectrum Scale 5.1.2 GA on all clients
RHEL 8.1 w/ 4.18.0-147.el8.x86_64 kernel on all clients
One HDR-Infiniband connection per client
Single socket - AMD EPYC 7302P 16-Core Processor per client
256GB Memory per client

Important mmchconfig Tuning on Clients Disables the Normal/Full Block Prefetch function:
prefetchAggressivenessRead=0
allowFullblockRead=0

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2022 IBM Corporation

Spectrum Scale

With the default tunings we prefetch too

aggressively for optimal ior-hard-read

performance

With adjusted tunings used for our io500

submission, ior-hard-read is improved but

ior-easy-read performance degrades.

Changes have already been made to io500

benchmarks for ior-hard-write and ior-hard-

read, to enable hints that optimize the

performance of these benchmarks. The

hint for ior-hard-read will give the best

performance for this benchmark while the

global prefetch settings are enabled.

The next targeted benchmarks are mdtest-

hard-write and mdtest-hard-delete,

Benchmark Normal

Prefetch

Disabled
(SC21 Sub)

Default

Prefetch

Enabled
(Baseline)

Latest

Runs
(Jan. 10

2022)

ior-easy-write 106.4 103.6

mdtest-easy-write 195.6 187.9

ior-hard-write 4.3 3.2 5.5

mdtest-hard-write 22.3 19.3 13.3

find 1185.2 2469.3

ior-easy-read 88.1 149.6 149.1

mdtest-easy-stat 272.2 267.2

ior-hard-read 29.3 1.9 28.2

mdtest-hard-stat 266.9 264.7

mdtest-easy-delete 113.4 114.2

mdtest-hard-read 205.4 251.3

mdtest-hard-delete 20.5 22.3 42.8

BW Score 33.0 17.5 39.7

IOPS Score 143.5 158.9 150.6

Total Score 68.8 52.8 79.0

SC21 io500 Submission on ESS3200 System (2/2)

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2022 IBM Corporation

Spectrum Scale

47008

Bytes

Task

0

Task

1

Task

2

Task

N-2

Task

N-1
Task

N

Segment 047008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

[...]

[...]

[...]

Number of tasks per node is configurable.

All tasks on the same node are either contiguous or round-

robin’ed (round robin example: with 4 tasks per node and 8 nodes,

the first node has MPI task numbers 0, 8, 16, and 24, etc.)

47008 bytes

written by task

0, at the

beginning

(offset 0) of the

shared output

file

47008 bytes written by task

N, at offset (47008)*N) bytes

from the start of shared

output file

47008 bytes

written by task N,

at offset

(47008*(N+1))

bytes from start of

shared output file

47008 bytes written by task

N, at offset (47008*2N)

bytes from the start of

shared output file

Segment 1

Segment M

Segment M:

47008 bytes

written by task N,

at offset

(47008*(N+1)) * M)

bytes from start of

shared output file

All Tasks Write to a Shared Output File

io500 Benchmark Focus : IOR Hard Write

Tasks write 47008 byte

chunks, each task writing

independently. When the

(min. 300 second) stonewall

timer expires, the task that has

written the most amount of

data defines how many

segments (M here) all tasks

must write.

Output File

IBM Spectrum Scale / Spectrum Scale User Group –

Performance Topics/ © 2022 IBM Corporation

Spectrum Scale
IOR Hard Write Challenges

What makes ior hard write so hard?

1. Shared block contention. Tokens needed for writes are granted on a file system block basis
(only one node can be writing to the same block at a time) and delays waiting on tokens/locks
will slow down the clients due to false sharing.

2. Token contention will lead to token revokes which will drive the flushing of data on nodes that
must release tokens, leading to less efficient (smaller than full block) I/Os to the drives,
particularly given the small 47008 byte I/O request sizes from the application.

3. For databases we have a good solution - using Direct I/O will eliminate locking in GPFS, but
the use of unaligned write request sizes in ior hard write prevents the use of direct I/O.

4. When using MPI-IO the MPI layer can solve these problem by coordinating the I/Os through
“intermediate collector nodes” but that limits the total number of clients sending directly to
servers (and maximum network throughput) and doesn’t provide a general POSIX solution.

• IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2022 IBM Corporation

Spectrum Scale

Io500 Client

Node 1

First File

System

Block

MPI Task 0

Second File

System

Block

Impact of Token/Lock Contention in ior Hard Write

Many tasks contending for the same

block will drive revokes, leading to

partial block writes

MPI Task 1

Io500 Client

Node 2

MPI Task 2

MPI Task 3

[...]

In this example, client node 1 is first to request token for first block of file.

Task 0 - achieves a lock for the first data block, writes data and moves to

second block

Task 1 – waits

for lock on first

block, then writes

data

Task 2+3 wait on tokens/locks

before writing

Unless the

O_SYNC option

is used

(currently

implicit in Direct

I/O), any write

call will return

after data is

written to a

buffer in page

pool memory.

A sync, buffer

clean, or token

revoke will flush

data to be

written to disk.

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2022 IBM Corporation

Spectrum Scale
IOR Hard Write Action Plan

• To address the ior hard write challenges, new function was added in
Spectrum Scale 5.1.2 which we intend to recommend when 5.1.3 is
released

Data Shipping/FineGrainWriteSharing (FGWS) hint (enabled via fcntl call)

• This function is enabled in the ior benchmark via the following commit:
https://github.com/hpc/ior/issues/390

• Clients ship their updates in a lockless manner to the I/O server nodes
coalescing writes (coalescing also optimizes client use of the network)

• Use of Data Shipping requires that every client writes to a unique range
of bytes in the shared output file (no two tasks write to the same byte) –
clients ship the data to all available servers (this is scalable in that
there’s no specific manager of the coalescing – all servers participate)

• I/O Servers merge updates from the clients and, a using new token
request batching function coming in 5.1.3, acquire appropriate locks

• Servers then write merged buffers via full file system block I/Os, avoiding
Read-Modify-Write (RMW) operations when possible

• IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2022 IBM Corporation

IO500

Large I/O
flushing

Small I/O
shipping

https://github.com/hpc/ior/issues/390

Spectrum Scale

Task 0

Writes

47008

Bytes

Task 1

Writes

47008

Bytes

Task 2

Writes

47008

Bytes

[...]

Task 0

Writes

47008

Bytes

Task 1

Writes

47008

Bytes

Task 2

Writes

47008

Bytes

[...]

Task 0

Writes

47008

Bytes

Task 1

Writes

47008

Bytes

Task 2

Writes

47008

Bytes

[...]
Output

File

MPI Task 0 MPI Task 1 MPI Task 2 [...] MPI Task N

A grouping of 47008

bytes written once by

every MPI task is a

‘segment’

First Segment: Second Segment:

io500 Benchmark Focus : IOR Hard Write Coalescing

Third Segment:

Task 0

Writes

47008

Bytes

Task 1

Writes

47008

Bytes

Task 2

Writes

47008

Bytes

[...]

Task 89

Writes

10592

Bytes

Servers Coalesce

Client Writes
(Try to

Avoid flushing less

than full buffers.

First Buffer on Server (4MB

in this example) written by

server using full block writes

Task 90

Writes

36416

Bytes

Task 91

Writes

47008

Bytes

Task 92

Writes

47008

Bytes

[...]

Task 179

Writes

21184

Bytes

[...]

Second Buffer on Server (4MB

in this example) written by

server using full block writes

Example, for case of 4MB file system block size, of how writes are coalesced:

[...]

zIBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2022 IBM Corporation

Spectrum Scale

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64

G
B

/s
 W

ri
te

 P
e
rf

Tasks Per Node

ior-hard-write w/FineGrainWriteSharing - ESS3000
8 Client Scaling-Spectrum Scale 5.1.1 vs 5.3.0 SB Build

8 clients - Spectrum Scale 5.1.3 sb build with FGWS 8 nodes - Spectrum Scale 5.1.1

Snapshot of IOR Hard Performance - Presented Week of SC’21

Comparison of IOR Hard Write performance of a recent 5.1.3 sandbox build of

FineGrainWriteSharing (FGWS) dataShipping function vs G/A Spectrum Scale 5.1.1 code on a single

ESS3000 building block (two 4X EDR links) – connected to single link FDR clients.

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2022 IBM Corporation

Spectrum Scale

Current Snapshot of IOR Hard Performance (Jan. 19 2022)

0

0,5

1

1,5

2

2,5

3

1 2 4 8 16 32 64

G
B

/s

Tasks/Processes Per Node

ior-hard-write - ESS3000
Spectrum Scale 5.1.1 – Scaling 1-8 Clients

ior hard write 1c ior hard write 2c

ior hard write 4c ior hard write 8c

0

5000

10000

15000

20000

25000

1 2 4 8 16 32 64

M
B

/s
 W

ri
te

 P
e
rf

.

Tasks Per Node

ior-hard-write w/FGWS - ESS3000
Spectrum Scale 5.1.3 Sandbox Build -

Scaling 1-8 Clients

1 node 2 nodes 4 nodes 8 nodes

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2022 IBM Corporation

Spectrum Scale

47008

Bytes

Task

0

Task

1

Task

2

Task

N-2

Task

N-1

Segment 0
47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

[...]

[...]

Number of tasks per node is configurable.

All tasks on the same node are contiguous (in terms of MPI task ID) or

round-robin’ed (round-robin’ed meaning that, with 4 tasks per node and 8

nodes, the first node has tasks 0, 8, 16, and 24, etc.)

47008 bytes

written by task 0

at offset

(47008*(N+1))

bytes from start

of shared output

file

will be read by

task N-1,

(exception for

task 0 written

data, which is

read by task N)

Segment 1

All Tasks Read from a Shared Input File

io500 Benchmark Focus : IOR Hard Read

The stonewallstatus file (written by ior

hard write) records the number of

segments to be processed by each

node. IOR hard read uses this file

instead of a stonewall timer to define the

amount of data to be read by all tasks.

Task

N

Task

N-3

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes

47008

Bytes
[...] Segment 2 [...]

Output File

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2022 IBM Corporation

Spectrum ScaleIO Hard Read Issues and Action Plan
• What makes ior hard read so hard?

• Shared file reads currently causes aggressive prefetching
leading to client nodes reading data that will not be consumed.

• Small read request size limits efficiencies of network transfers if
prefetch isn’t done correctly.

• The benchmark ensure that all tasks read data written by
another task, which means there are token considerations (can
be addressed by MPI hint to release tokens).

• Like ior hard write, a 47008 byte write request size is used,
which prevents Direct IO from being used.

• Action plan:

• Multiple design changes are being made to prefetch with
optimizations controlled via fcntl hint. A fineGrainReadSharing
hint has been added to IOR via this commit:
https://github.com/hpc/ior/issues/390

IO500

More
efficient
reading
of data
by
changing
how
prefetch
is done

https://github.com/hpc/ior/issues/390

Spectrum Scale
mdtest Hard Deletes - Prefetch Inode Lookups for Deletes (1/2)

• mdtest workload characterization

– mdtest Hard consists of four phases: 1) create, 2) stat, 3) read, 4) delete

– Both the mdtest hard delete and write.

• Analysis

– Linux serializes updates on a directory. A single client node can only do one delete at a time for a

given directory

– Task mapping rotates between phases, files created on one node are deleted by another node => each

file delete revokes inode lock token and reads inode

• Proposed approach – Metadata (inode lookup) Prefetch for Deletes

• Observation: since files being deleted were all created on a different, but single node, inodes were

allocated from the same (or small set of) segment(s) of the inode allocation map

• Seeing the first few deletes allows to predict next files that will be deleted

• This approach can be used to prefetch required tokens and read inodes in parallel (overcomes

serialization of lookups)

• Implementation complete in 5.1.3 and lab measurements show a 2X improvement!

Spectrum Scale
mdtest Hard Deletes - Prefetch Inode Lookups for Deletes (2/2)

inode allocation map

Deletes

(*simplified sketch)

se
g

m
e

n
t

Deletes

prefetch

(*simplified sketch)

se
g

m
e

n
t

Io500 running on node 2

Additional
segments may
not be prefetched
from

se
g

m
e

n
t

Deletes

prefetch

(*simplified sketch)

se
g

m
e

n
t

Io500 running on node 1

Additional
segments may
not be
prefetched
fromse

g
m

e
n

t

Deletes

prefetch

(*simplified sketch)

se
g

m
e

n
t

Io500 running on node X

se
g

m
e

n
t

[... Additional nodes ...]

Additional
segments may
not be
prefetched
from

Multiple segments may be dedicated to each node, but, since this benchmark operates on only a single

directory and there’s a mapping between directories and inode segments used, only one segment should be

used at a time during creates (the total number of segments used will depend on how many files are created)

To get the 2X performance improvement we’ve observed in the lab, two things must be done:

1. There must be sufficient free inode segments so that the (mdtest-write-hard) create phase of the

benchmark is able to allocate sufficient dedicated inode segments to all clients involved

2. Designated metanode function must be enabled: echo 999 | mmchconfig preferDesignatedMnode=yes *
* This may degrade the mdtest-hard-write benchmark, which we’re currently debugging in the lab

[...] [...] [...]

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ ©

2020 IBM Corporation

Spectrum Scale

Prefetch Related Performance Enhancements

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2020 IBM Corporation

Spectrum Scale

Fixed Percentage of Page Pool Used for Prefetch (5.1.1-2)

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2020 IBM Corporation

• In lab testing we found read

variance on machines running a

converged workload (a workload in

which the clients also function as

NSD servers)

• We observed that the rate of

prefetching data was much higher

than the rate at which the

application consumed data, and

this discrepancy did not correct

itself over time.

Spectrum Scale

Fixed Percentage of Page Pool Used for Prefetch (5.1.1-2)

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2020 IBM Corporation

Page Pool
Available for ‘Client

Side’ Operations

Space Reserved
for NSD buffer

space
(nsdBufSpace)

Page Pool
Available for ‘Client

Side’ Operations

Space Reserved
for GNR

(nsdRAIDBufferPoolSizePct)

GPFS Page Pool Client/Server Use Breakdown
• We observed variation with read workloads and

that variation could be addressed by disabling

read prefetch (mmchconfig

prefetchAggressiveness=0) or by decreasing

the number of prefetch threads (mmchconfig

prefetchThreads=(lower value))

• We found root cause: some read operations were

done twice (the prefetch buffer was stolen,

resulting in the need to repeat the read request)

• The intended design is to limit prefetch buffers to

use a portion of the page pool, and, once the limit

is hit, prefetch should stop until the buffers used

for prefetching have been consumed by

applications. This is addressed in 5.1.1-2.

Spectrum Scale

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2020 IBM Corporation

In Spectrum Scale 5.1.2

prefetch has been made

more efficient by

eliminating the use of the

VinfoLock.

We’ve seen the

VinfoLock cause

performance loss for a

number of workloads.

Examples are mmap

read workloads as

described in the March

2020 Performance

Update Presentation

March 2020

Topic Related to

Prefetch

VinfoLock Decoupled From Prefetch Flows (5.1.2)

Spectrum Scale

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2020 IBM Corporation

Now enabling prefetch

for mmap allows multiple

threads reading a shared

file to leverage prefetch,

without seeing

performance degradation

due to VinfoLock

contention in Spectrum

Scale.

VinfoLock Decoupled From Prefetch Flows (5.1.2)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 24 48

M
B

/s
 R

e
a
d

Tasks Per Node

Single File 8 MB Blocksize FIO Seq. mmap Reads
Average Read Throughput in MB/s (3 runs)

FIO Comparison of 5.1.1.4 and 5.1.2.0 Code Levels

5.1.2.0 prefetch disabled 5.1.2.0 prefetch enabled

5.1.1.4 prefetch disabled 5.1.1.4 prefetch enabled

Spectrum Scale

• A customer opened a case to investigate why one of their jobs was impacting other workloads on the

system, and we believe that impact was related to network interference caused by the job.

• Traces revealed that there were windows of time in which the application was prefetching much more

data than it consumed, and the access pattern was able to drive new prefetching for long enough to

cause enough network activity to create network interference (so short spurts of sequential access

continued to lead to prefetch using network bandwidth)

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2020 IBM Corporation

Prefetch Activity Causing Application Interference (5.1.3 work item)

Spectrum Scale

Prefetch Activity Causing Application Interference (5.1.3 work item)

• The ‘normal’ full block prefetching flows are tied to full block reads so increasing the block size of a file

system will increase the rate at which prefetch may potentially occur

• We looked at the efficiency of prefetch in terms of how often a given buffer is consumed by the

application before it is freed from the page pool, and we found that, for a customer application we

focused on, the efficiency of prefetch decreased as we increased the block size

• In 5.1.3 the mmchconfig option prefetchLargeBlockThreshold allows for less aggressive prefetching

(the rate at which prefetch ramps up is decreased).

• Setting prefetchLargeBlockThreshold equal or less than the size of the block size for a given file

system will enable this feature for the file system(s) (for example, to enable this less aggressive

prefetching flow for 4, 8, and 16 MB file systems set (prefetchLargeBlockThreshold=4194304)

• Though disabled by default, our plan is to work with customers to enable the

prefetchLargeBlockThreshold option to address issues with prefetch efficiency, and to investigate

additional heuristics (including exploring machine learning algorithms to improve prefetch)

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2020 IBM Corporation

Spectrum Scale

Prefetch Improvements – Potential Variation Fixed in 5.1.3

We found another example of workloads that were showing variance that
could be tuned away be reducing the mmchconfig option prefetchThreads
and fixed this problem in Spectrum Scale 5.1.3.

Issue fixed in 5.1.3: degradation in performance related to number of page pool

allocators. Prior to 5.1.3, when one allocator was low on memory, we could steal

page pool buffers from that allocator’s buffer pool, resulting in an application stall

because data will need to be reread into the page pool.

Starting in 5.1.3, we look at the overall balance of prefetch buffers across all

allocators and don’t try to balance each allocator’s use of page pool buffers.

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2020 IBM Corporation

Spectrum Scale

Trim

Agenda

- High-level working of Solid-State Drives

- Resulting Issues - Performance Degradation Over Time and Wear

of Flash Cells

- Trim and its Benefits

- Performance Measurements from IBM Lab

Spectrum ScaleFirstly a few points to help understand TRIM better

- The Solid-State Drives (SSDs) store and manage data differently compared to traditional hard drives.

- The smallest unit of an SSD is a page (composed of several memory cells), and several pages form a block.

- Data can be read/written at the page level, but the deletion can only be done at block level.

- Unlike traditional hard drives, the data in NAND SSD can’t be directly overwritten. Data can only be written to

new or erased pages.

- An SSD knows data is invalid only when new data is written to that location.

Spectrum Scale

- The storage media generally do not know which sectors/pages are in use, and which contain invalid data.

When a file is deleted at the file system layer, the file system structures are updated, but the storage media is

unaware the blocks have become available.

Spectrum Scale
- When an SSD fills up (file system may not to be full), there are fewer fresh blocks to move the data into, and it

gets to a point where the SSD slows down as it waits for new blocks to write data, thus impacting the

performance.

- The flash memory cells have a finite working life and can fail after several thousand Program/Erase (P/E)

cycles. The old/obsolete data, until over-written, can be on the SSD and get moved around as part of

Garbage Collection (GC), thus increasing the write-amplification and wear of the flash cells.

- Trim command allows the software to inform the SSD which blocks of data are not in use and can be erased

internally.

- Garbage Collection will erase the blocks and make them available in time for new data writes, and thus

helping SSD perform consistently and better than the performance without Trim.

- Trim also helps with decreasing the write amplification, as the SSDs can reclaim the invalid/deleted pages and

doesn’t have to copy them unnecessarily during block erasure.

- mmreclaimspace is the Spectrum Scale command used to run Trim. The command is supported on

Traditional Scale and Spectrum Scale RAID/GNR systems (Elastic Storage Systems, Erasure Code Edition).

- In case of Spectrum Scale RAID systems, Scale issues RPC to NSD/vdisk server, then GNR 1) performs

clean up operations in GNR layer like purge buffer data and discard fast write log records for the vtrack and

mark the vtrack unused (i.e. trim to vdisk), and 2) sends trim commands to the physical devices to reclaim

space (i.e. trim to physical device).
Example Command: mmreclaimspace foofs --reclaim-threshold 0

- mmreclaimspace in KC has more details on the command and how to use it.

https://www.ibm.com/docs/el/spectrum-scale/5.0.5?topic=reference-mmreclaimspace-command

Spectrum Scale

Please Note

❖ For the tests in this presentation,

• A fully populated (24 x 3.84T NVMe) ESS 3000 was used.

• 100% of drive capacity was used to create GNR Vdisks.

• File system block size was 4M.

❖ The performance numbers shown in this presentation were produced in IBM lab under ideal conditions

and are to help understand how Trim works. The actual performance could vary depending on several

factors, like numbers of drives, drive type and capacity, server capability, etc.

Spectrum Scale
Create, Delete (and Reclaim)

0. Start with fresh file system.

1. Fill up file system (IOR Sequential - 24 x 2500GiB files).

2. Delete files and wait for mmdf to report 100% free.

3. Run "mmreclaimspace fs3k1 --reclaim-threshold 0". Wait for 10 mins for the drives to complete the async discard activity. (skip

for without TRIM test)

4. Repeat 1, 2 & 3.

Spectrum Scale
Create, Update, Delete (and Reclaim)

0. Start with fresh file system.

1. Fill up file system (IOR Sequential - 24 x 2500GiB files).

2. Re-write (IOR Random) all files without stonewalling. Repeat 3 times.

3. Delete files and wait for mmdf to report 100% free.

4. Run "mmreclaimspace fs3k1 --reclaim-threshold 0". Wait for 10 mins for the drives to complete the async discard activity. (skip

for without TRIM test)

5. Repeat 1, 2, 3 & 4.

Spectrum Scale
Write (Update Existing Files) Performance during Reclaim

Spectrum Scale
Read Performance during Reclaim

Spectrum Scale
Reclaim Performance – Large Files

- Assuming the system is idle, the time to complete reclaim is expected to increase linearly with increase in

space to be reclaimed. For example – it’s expected to take ~56 mins to reclaim 120TiB space on a fully

populated ESS 3000 building block.

- Time to complete reclaim also depends on number of drives doing Trim. For example – on a system with 12

drives and 60T of reclaimable space, it would take ~56 mins vs ~14 mins on a system with 48 drives and 60T

of reclaimable space.

Spectrum Scale
Reclaim Performance – Small Files

- The time to reclaim is dependent on the size of free space to reclaim. The number of files had very minimal (or no)

impact.

Spectrum Scale
Over-Provisioning

Blue Curve: Using 100% of available space for file system.

Orange Curve: Using 80% of available space for file system.

- The create is after a mmreclaimspace and the performance is equivalent to FOB performance. But the update

performance in the following iterations is impacted by GC. The orange curve, which is using only 80% of available

raw capacity, shows better update performance because of extra 20% over-provisioning.

Spectrum Scale
The Actual Reclaim Happens in the Background

- Trim is asynchronous and the background activity, after mmreclaimspace completes, impacts performance.

- On ESS3000 with 3.84T drives, the performance was fully restored after 8mins.

- The wait time could vary on systems with different drive types and capacities.

Spectrum Scale

Thanks!

IBM Spectrum Scale / Spectrum Scale User Group – What’s new with 5.0.5 / © 2020 IBM Corporation

Spectrum ScaleCheck out the FAQ!
https://www.ibm.com/support/knowledgecenter/en/STXKQY/gpfsclustersfaq.html
https://www.ibm.com/support/knowledgecenter/STXKQY/gpfsclustersfaq.pdf?view=kc
https://www.ibm.com/support/knowledgecenter/SSYSP8/gnrfaq.html

HTML or PDF

Spectrum Scale version
compatibility with OS or
kernels

Updated regularly!

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2021 IBM Corporation

https://www.ibm.com/support/knowledgecenter/en/STXKQY/gpfsclustersfaq.html
https://www.ibm.com/support/knowledgecenter/STXKQY/gpfsclustersfaq.pdf?view=kc
https://www.ibm.com/support/knowledgecenter/SSYSP8/gnrfaq.html

Spectrum Scale

Log your RFE!
https://www.ibm.com/developerworks/rfe/execute?use_case=productsList

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2021 IBM Corporation

https://www.ibm.com/developerworks/rfe/execute?use_case=productsList

Check https://www.spectrumscaleug.org/experttalks
for charts, show notes and upcoming talks

• Past talks:
– 001: What is new in Spectrum Scale 5.1.2?
– 002: Best practices for building a stretched cluster
– 003: Strategy update
– 004: Update on performance enhancements in Spectrum Scale

(file create, MMAP, direct IO, ESS 5000)
– 005: Update on functional enhancements in Spectrum Scale

(inode management, vCPU scaling, NUMA considerations)
– 006: Persistent Storage for Kubernetes and OpenShift environments
– 007: Manage the lifecycle of your files using the policy engine
– 008: Multi-node scaling of AI workloads using Nvidia DGX, OpenShift and Spectrum Scale
– 009: Continental: Deep Thought – An AI Project for Autonomous Driving Development
– 010: Data Accelerator for Analytics and AI (DAAA)
– 011: What is new in Spectrum Scale 5.1.0?
– 012: Lenovo - Spectrum Scale and NVMe Storage
– 013:Event driven data management and security using Spectrum Scale Clustered Watch Folder and File Audit Logging

• Today:
– May 19: What is new in Spectrum Scale 5.1.2?

https://www.spectrumscaleug.org/experttalks

Spectrum Scale
Thank you!

Please help us to improve Spectrum Scale with your feedback

• If you get a survey in email or a popup from the GUI,

please respond

• We read every single reply

Spectrum Scale

User Group

The Spectrum Scale (GPFS) User Group is
free to join and open to all using, interested in
using or integrating IBM Spectrum Scale.

The format of the group is as a web
community with events held during the year,
hosted by our members or by IBM.

See our web page for upcoming events and
presentations of past events. Join our
conversation via mail and Slack.

www.spectrumscaleug.org

http://www.spectrumscaleug.org/

Spectrum Scale
Spectrum Scale Developer
Edition! Fully functional!

– Based on first PTF of a release

– Derived from Data Management Edition (DME)

– Limited to 12 TBs:

enough for a small test cluster

– Available from the Scale ”try and buy” page on

ibm.com

Free for non-production use, e.g. test,

learning, upgrade prep…

– If you have to ask, it’s probably not permitted

Not formally supported

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2021 IBM Corporation

Spectrum Scale

❑ Evaluate new IBM HW or SW in your

environment.

❑ Validate procedures and interoperability with

other products in your enterprise.

❑ Opportunity to Influence Product Design

❑ Early Enablement and education

❑ Strengthen Partnership with IBM

Customer Success Talk to your IBM contact or Partner to be nominated!

Spectrum Scale Early Programs

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2021 IBM Corporation

Spectrum Scale
Spectrum Scale on GitHub!
https://github.com/IBM/SpectrumScaleTools

Find open source tools that are

related with IBM Spectrum Scale.

Unless stated otherwise, the tools

compiled in this list come with no

warranty of any kind from IBM.

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2021 IBM Corporation

https://github.com/IBM/SpectrumScaleTools

Spectrum Scale
Check out the FAQ!
https://www.ibm.com/support/knowledgecenter/en/STXKQY/gpfsclustersfaq.html
https://www.ibm.com/support/knowledgecenter/STXKQY/gpfsclustersfaq.pdf?view=kc
https://www.ibm.com/support/knowledgecenter/SSYSP8/gnrfaq.html

HTML or PDF

Spectrum Scale version
compatibility with OS or
kernels

Updated regularly!

IBM Spectrum Scale / Spectrum Scale User Group – Performance Topics/ © 2021 IBM Corporation

https://www.ibm.com/support/knowledgecenter/en/STXKQY/gpfsclustersfaq.html
https://www.ibm.com/support/knowledgecenter/STXKQY/gpfsclustersfaq.pdf?view=kc
https://www.ibm.com/support/knowledgecenter/SSYSP8/gnrfaq.html

