

#### Lenovo Documentation for DSS-G, and ECE on DSS-G100







https://lenovopress.com/lp0837

https://lenovopress.com/lp1227

https://lenovopress.com/lp1049





#### IBM Documentation for ECE



Scale 5.1.0: scale\_ece.pdf Scale 5.1.0: raid\_adm.pdf



https://www.redbooks.ibm.com/abstracts/redp5557.html?Open



IBM Knowledge Center, e.g.

Outline of an mmvdisk use case

(Example is for a "paired RG",
but the same steps also apply for
ECE's "scale-out RG")





#### Positioning IBM Spectrum Scale ECE (Erasure Code Edition)

- DSS-G2xy is a hardware-redundant solution (dual-ported JBODs) with software RAID
- Fixed sizes; expansion @ full enclosures
- NL-SAS and SSD support (no NVMe)
- Disk- or capacity-based licensing

#### DSS-G2xy with DAE / DME: Two servers + JBOD(s):



- DSS-G100 is a server with internal NVMe
- ECE is a scale-out solution providing software redundancy (network RAID) for internal disks
- ECE <u>cluster</u> size: min. 6 nodes; max: 128 incremental expansion (+ 1 node); max. <u>32</u> nodes / ECE <u>RG</u>
- Capacity-based licensing (disk-based is WIP)

#### **DSS-G100** with ECE: Scale-out; ≤32 servers/RG:



ECE supports:

4+2P, 4+3P, 8+2P, 8+3P; 3Way, 4Way repl.

## Lenovo DSS-G100 NVMe-rich Server: ThinkSystem SR630





#### ECE in Lenovo's HPC Innovation Center Stuttgart



#### Lenovo Recommended RG Sizes for each Erasure Code

Table 4-3 Recommended Recovery Group Size for each Erasure Code

| Number of Nodes | 4+2P                         | 4+3P              | 8+2P                            | 8+3P                         |
|-----------------|------------------------------|-------------------|---------------------------------|------------------------------|
| 4               | Not<br>recommended<br>1 Node | 1 Node + 1 Device | Not<br>recommended<br>2 Devices | Not<br>recommended<br>1 Node |
| 5               | Not<br>recommended<br>1 Node | 1 Node + 1 Device | Not<br>recommended<br>1 Node    | Not<br>recommended<br>1 Node |
| 6 - 8           | 2 Nodes                      | 2 Nodes [1]       | Not<br>recommended<br>1 Node    | 1 Node + 1 Device            |
| 9               | 2 Nodes                      | 3 Nodes           | Not<br>recommended<br>1 Node    | 1 Node + 1 Device            |
| 10              | 2 Nodes                      | 3 Nodes           | 2 Nodes                         | 2 Nodes                      |
| 11+             | 2 Nodes                      | 3 Nodes           | 2 Nodes                         | 3 Nodes                      |

**Note:** For 7 or 8 nodes, 4+3P is limited to two nodes by recovery group descriptors rather than by the erasure code.

# Lenovo DSS-G Support Requirement for ECE:

- Minimum 6 Servers for 4+2P
- Minimum 9 Servers for 4+3P [1]
- Minimum 10 Servers for 8+2P
- Minimum 11 Servers for 8+3P

#### **Recommendation:**

Add 2 or 3 more nodes for rebuild scenarios...

- 8+ Servers for 4+2P (+2P)
- 10+ Servers for 4+3P (+3P)
- 12+ Servers for 8+2P (+2P)
- 14+ Servers for 8+3P (+3P)



## ECE Fault Tolerance Example: 4+3P on 5 Servers



#### ECE Fault Tolerance Example: 4+3P on 5 Servers



single server + 1 disk fault



## ECE Fault Tolerance Example: 4+3P on 5 Servers



#### Intel NVMe Drive Options for DSS-G100

Other OEM vendors' NVMe drives that are supported in the SR630 should also work...

| Drive<br>Series        | Storage<br>Technology | Capacity [GB] | Sequential<br>Read<br>[MB/s] | Sequential<br>Write<br>[MB/s] | Random<br>Read<br>[k IOPS] | Random<br>Write<br>[k IOPS] | Read<br>Latency | Write<br>Latency<br>[usec] | Active<br>Power | Idle<br>Power<br>[W] | Write<br>Endurance<br>[PBW] | Write<br>Endurance<br>[DWPD] |
|------------------------|-----------------------|---------------|------------------------------|-------------------------------|----------------------------|-----------------------------|-----------------|----------------------------|-----------------|----------------------|-----------------------------|------------------------------|
| E                      | Entry (~1 DWPD)       |               |                              |                               |                            |                             |                 |                            |                 |                      |                             |                              |
| P4510                  | 64layer 3D TLC NAND   | 1000          | 2850                         | 1100                          | 465,0                      | 70,0                        | 77              | 18                         | 10,0            | 5,0                  | 1,92                        | 1,05                         |
| P4510                  | 64layer 3D TLC NAND   | 2000          | 3200                         | 2000                          | 637,0                      | 81,5                        | 77              | 18                         | 12,0            | 5,0                  | 2,61                        | 0,72                         |
| P4510                  | 64layer 3D TLC NAND   | 4000          | 3000                         | 2900                          | 625,5                      | 113,5                       | 77              | 18                         | 14,0            | 5,0                  | 6,30                        | 0,86                         |
| P4510                  | 64layer 3D TLC NAND   | 8000          | 3200                         | 3000                          | 620,0                      | 139,5                       | 77              | 18                         | 16,0            | 5,0                  | 13,88                       | 0,95                         |
| Main                   | Mainstream (~3-5 DWD) |               |                              |                               |                            |                             |                 |                            |                 |                      |                             |                              |
| P4610                  | 64layer 3D TLC NAND   | 1600          | 3200                         | 2100                          | 620,0                      | 200,0                       | 77              | 18                         | 13,3            | 5,0                  | 12,25                       | 4,20                         |
| P4610                  | 64layer 3D TLC NAND   | 3200          | 3200                         | 3000                          | 640,0                      | 200,0                       | 77              | 18                         | 13,8            | 5,0                  | 21,85                       | 3,74                         |
| P4610                  | 64layer 3D TLC NAND   | 6400          | 3000                         | 2900                          | 640,0                      | 220,0                       | 77              | 18                         | 14,6            | 5,0                  | 36,54                       | 3,13                         |
| Performance (~30 DWPD) |                       |               |                              |                               |                            |                             |                 |                            |                 |                      |                             |                              |
| P4800X                 | 3D Xpoint             | 375           | 2400                         | 2000                          | 550,0                      | 550,0                       | 10              | 10                         | 18,0            | 5,0                  | 20,50                       | 29,95                        |
| P4800X                 | 3D Xpoint             | 750           | 2500                         | 2000                          | 550,0                      | 550,0                       | 10              | 10                         | 18,0            | 6,0                  | 41,00                       | 29,95                        |



# File System Blocksizes Supported by ECE

| Disk Media               | 4+2P, 4+3P                                          | 8+2P, 8+3P                                               |
|--------------------------|-----------------------------------------------------|----------------------------------------------------------|
| HDD<br>(NL-SAS)          | 1M, 2M, 4M (8kiB subblocks)<br>8M (16kiB subblocks) | 1M, 2M, 4M (8kiB subblocks)<br>8M, 16M (16kiB subblocks) |
| Flash<br>(SAS-SSD, NVMe) | 1M, 2M (8kiB subblocks)                             | 1M, 2M, 4M (8kiB subblocks)                              |







































# NSD I/O Path – DSS-G2xy versus ECE@DSS-G100



#### Summary

- Spectrum Scale Erasure Code Edition (ECE), as a superset of Scale DME, is now added to the IBM / Lenovo OEM agreement
  - Lenovo can sell fully integrated ECE solutions as of now (DSS-G100)
- DSS-G100 @ ECE is an excellent scale-out solution for Scale on NVMe
  - Pay attention to Lenovo's <u>minimum</u> and <u>recommended</u> ECE cluster sizes...
  - Software RAID setup is managed through the mmvdisk command set
- ECE read bandwidth is typically good
  - currently debugging an odd read performance issue with gpfs-5.1.0.2
- ECE write performance work is ongoing (target: DSS-G 3.2, ~June 2021):
  - Need to do more testing with GNR TRIM support enabled (available since gpfs-5.0.5)
  - Network performance analysis / tuning needed for NSPD traffic at wirespeed loads
    - "fat" front-end network, versus "split" front-end and back-end networks





# Bi-Directional Traffic on a Single ConnectX-6 EDR Card/Port



