From CephFS to Spectrum
Scale

Sean Crosby
Research Computing Services

University of Melbourne

Our HPC site

e Spartan is our HPC system, a catchall HPC service for all researchers at
the University

e Started in 2015 as a cloud/physical hybrid — majority of cores came
from spare cycles on the NeCTAR Research Cloud. Physical nodes
were purchased by research groups at the Uni for dedicated use.

* Filesystem was Netapp NFS

* Moved to CephFS for 3 reasons
* Running out of space and maintenance on Netapp

* Cloud team had experience with Ceph as object store — FS can’t be too hard?
* Uni won a LIEF grant for 77 GPGPU nodes

Our HPC site

* 90 GPU nodes (360 P100/V100 GPUs) — Dell C4130 — Single
connected 100Gb

e 100 CPU nodes (24/32/72 core) — Dell R840 — Dual connected LACP
50Gb

* Mellanox SN2700/SN3700 leafs in superspine/spine/leaf
configuration running Cumulus 4.1

TN
uun\w\\x\\\‘.m

/I///l//ll//l/!thlll muum \\\\\\W\\
VAN TN

AL !!HI }Elg

Spartan Row Q
a n d — 100Gb/s
Storage S

25Gb/s
Spartan
e
e i gt st
1Tel: —: Ie:;;‘;-q&Z-res] (le-266-q14- T%E—ﬁ(|Zz‘2‘e 14-2-res
AT S—

Pt winkl] w2 unkl upnk2

@ [serverl | [serverz |

Storage Storage Storage Spartan: Snowy Spartan

— 1 00 Gh /s

SuperSpine Layer

[bl-266-n10-1-res] [bl-266-n10-2-res
oo

\

,..,?f -
.'l wEl |
| s5=266-m17-1-res e ~e| 55-266-ple-1-res |
i % = o
f mll wapll \ 3 wapls \
" " ’ / 12 wapld || supta W
.\
|
W

i
¥
i -
.f i # f
§ W
/ _ i / hY
.if _,-"/ [/ , \\\\
y # ,lf N Ny
,i'f ,z" | ., / \ \ \\\
/ /'/ I|I|II / W, | \\\. \.\
rf __,.l" L] \ II \'\.\ m _—
] 1” \ | R ,
.y Sy - | R
[sp-255-|17-1.r5] [sp-}_‘ﬁﬁ-ml?-lvrﬁl [spv}_‘ﬁﬁ-p lsvlvres] [sp-256-q lﬁvl-rﬁ]

CephFS

* Filesystem on top of Ceph object storage

e Ceph has monitors and OSDs
* Monitors keep track of state of cluster and quorum

e OSDs are the object storage devices
* Normally 1 OSD per physical drive
» Data stored in either replication (typically 3), or erasure coding (typically 4+2)
* When OSD is unavailable, system will replicate data on that OSD to free OSDs to recover system

* Very stable

* CephFS adds metadata servers to provide the filesystem
e Store metadata in either same pool as data or dedicated
* Grants/revokes capabilities (caps) on metadata and data of inodes, and locks on inodes
e Single threaded
* Was “not supported”/experimental until a few years ago

CephFS

* Scaling CephFS
* Single threaded means many inode/metadata updates can be slow

* Multiple metadata servers
» Active/backup — won’t help with speed, but is helpful for availability
* Multi active — split directory tree between active members

Storage issues with Spartan

e July 2018

Monitors couldn’t contact a few OSD hosts, so replication recovery began

More OSDs started to not be contactable, in a rolling fashion. Monitors were
so loaded with recovery calculations they crashed.

Monitors brought back up, but filesystem still not accessible
Online guide to filesystem recovery run which brought cluster back online

2 days later same network problem occurred, and same steps run. Cluster
back online.
2 days later MDS crashed with inode uniqueness error. Files were trying to be

written with same inode number as existing files. Thought nothing of it —
started MDS. Cluster back online.

Storage issues with Spartan

e July 2018

* MDS crashed again with inode uniqueness problem

* Rechecked online guide. One of the commands suggested to run (inode
session table zap) should only ever be run in certain circumstances.

 Did a full filesystem scan (3 days) and then filesystem back up and stable

* Memory pressure

* Our MDS servers had 512GB RAM. MDS memory usage due to capabilities
given to nodes. MDS when getting low in RAM should request caps to be
released, freeing RAM. Memory usage normally around 460GB, with spikes
every few weeks causing MDS to crash, and either starting again and picking
up where it was before, or standby MDS taking over. Normally periods of
10mins where |0 was stuck and MDS was recovering.

Storage issues with Spartan

11

Storage issues with Spartan

* GPGPU workload causing MDS slowness

From “ceph health detail’, I0 ops on Spartan would be around 4-5k ops/sec.

A few datasets (clothinglM in particular) when run on multiple nodes, would cause 10 ops/sec to spike at 90-100k ops/s,
causing metadata slowness, and users would see simple interactive ops (ls, chown etc) hang

* Lack of monitoring

Simple ability to check which nodes were causing highest Ceph load (either ops/s, or bandwidth), and breakdown between
multiple pools (we had 2 — one 10K SAS, and another Sandisk flash) was lacking with CephFS

Would have made tracking which jobs were causing the most CephFS issues so much easier

* Different mount method produces different functionality

CephFS offers two ways of mounting the filesystem — kernel or FUSE client

FUSE Icllient — supports latest functionality, supports quotas,mmap(), but is much slower, and suffers from memory pressures
as we

Kernel client — fastest, no quota support (in version we were using), needed newer kernel than stock EL7 kernel for most
functionality (until Redhat bought Ceph and then they backported to stock EL7 kernel), no mmap() support

So either run in fastest mode and have no quotas, or slowest mode and have quotas. So we ran FUSE on login nodes, and
kernel on worker nodes

Users running work on login node would cause the OOM killer to kill ceph-fuse, stopping filesystem on that node

Time for a new FS

Reliability, reliability, reliability
RoCE used by jobs — why not have storage use it as well?
Quota enforcement everywhere

Currently at 5k CPU cores — will probably reach 10k CPU cores in next few
years - need to guarantee minimum of 4MB/s throughput for all CPU cores.

Snapshot support

Single monitoring pane — 10 throughput, quotas, node 10, system health
2PB spinning and 500TB flash, with ability to add more if required
Reliability

Time for a new FS

Responses included Lustre, BeeGFS, WekalO, Spectrum Scale

Based on price, requirements and references, Spectrum Scale from Advent
One/IBM was chosen

GH14s, EMS node, 3 protocol nodes and 3 ESS 3000

Single point of contact for hardware and software support, as well as no
capacity license was a huge factor for us

Proceeded to POC

Spectrum Scale POC

GH14s installed in our datacentre and configured by IBM
Both IO nodes connected with 6x100Gb QSFP28
Originally running 5.0.4-1

Aim was compatibility with environment, RoCE, performance and functional
tests

Functional — GUI, mmap(), quotas, most common apps on CephFS
Performance — 10500 10 node 160thread

emsl] [gssio2]
uplinkl upink? uphnkl upink?
Exh1L Bhyn
| ~wnn ek
sw-266-pl8-1-res sw-266-pl8-2-res
Bh
el Eth fz,31] e, el =)
S
P
,/,"J/ N
& A
r =
e Y

" supaz s

(Je-266-p16-Lres 2= le-266-p16-1-res |

[——)

17

RoCE

RDMA over converged ethernet

Uses explicit congestion notification (ECN) and priority flow control (PFC) to
allow Infiniband verbs to be carried over ethernet in a lossless fashion

Have been using it for 2 years so far
OpenMPI — openib BTL, rdmacm, UCX PML

traffic.cos_2.priority_source.dscp
traffic.cos _3.priority_source.dscp

[48]
[26]

traffic.priority_group_1list = [control, service, bulk]
priority_group.control.cos_list = [2]
priority_group.service.cos_list = [3]
priority_group.bulk.cos_list = [0,1,4,5,6,7]

priority_group.control.weight
priority_group.service.weight

0
16

priority_group.bulk.weight = 16

ecn_red.port_group_list = [ROCE_ECN]

ecn_red.ROCE_ECN.port_set
ecn_red.ROCE _ECN.cos list

3]

ecn_red.ROCE _ECN.ecn_enable = true

ecn_red.ROCE _ECN.red enable

pfc

pfc
pfc
pfc

.port_aroup_list = [ROCE_PFC]

.ROCE_PFC.port_set = ...
.ROCE _PFC.cos _list = [3]
.ROCE_PFC.port_buffer_bytes = 70000 .

le-266-p06-1-res

spartan-gpgpu047 spartan-gpgpu048 : 6352.926928 MB/sec 1 4055 usec

spartan-gpgpu049 spartan-gpgpu050 : 6357761073 MB/sec 1367001 usec

spartan-gpgpu051 spartan-gpgpu052 : 6354.948283 MB/sec 1.3605 usec

spartan-gpgpu053 spartan-gpgpu054 : 6352.022526 MB/sec 1.3915 usec

spartan-gpgpu055 spartan-gpgpu056 : 6352.503554 MB/sec 1.385 usec Awg Lat 13738077692 usec
spartan-gpgpu057 spartan-gpgpu058 : 6355.217911 MB/sec 1.3925 usec Max Lat 1.4055 usec
spartan-gpgpu059 spartan-gpgpul60 : 6358.898474 MB/sec 1357 usec Min Lat 1.3455 usec
spartan-gpgpul6l spartan-gpgpult2 : 6359.01418 MB/sec 1.3635 usec Avg Trans rate 6355.6768387 MB/sec
spartan-gpgpul63 spartan-gpgpultd : 6358.01160 MB/sec 1.386499 usec Max Trans rate 6359.01418 MB/sec
spartan-gpgpu065 spartan-gpgpul66 : 6355.911299 MB/sec 1 3585 usec Min Trans rate 6351 21456 MB/sec
spartan-gpgpu067 spartan-gpgpul68 : 6351 21456 MB/sec 1 3455 usec

spartan-gpgpu069 spartan-gpgpul70 : 6356.50853 MB/sec 1.387501 usec

spartan-gpgpu047 spartan-gpgpu07l : 6358.859895 MB/sec 1.358 usec

le-266-q14-1-res

spartan-bm083 spartan-bm034 5805.329354 MB/sec 1 6505 usec

spartan-bm085 spartan-bm086 5816.358397 MB/sec 1 606 usec

spartan-bm087 spartan-bm033 5815342314 MB/sec 1631501 usec

spartan-bm089 spartan-bm030 5812.31225 MB/sec 1613 usec

spartan-bm(91 spartan-bm092 5806.743109 MB/sec 1.580978 usec Awg Lat 15847422727 usec
spartan-bm093 spartan-bm094 5812 134978 MB/sec 1.613458 usec Max Lat 1.6505 usec
spartan-bm095 spartan-bm096 5811.878085 MBfsec 1.565029 usec Min Lat 1565029 usec
spartan-bm097 spartan-bm098 5815.89150 MB/sec 158 usec Avg Trans rate 5810.1659998 MB/sec
spartan-bm099 spartan-bm100 5806.759955 MB/sec 1570035 usec Max Trans rate 5820.459723 MB/sec
spartan-bm101 spartan-bm102 5809 396576 MB/sec 1570501 usec MinTrans rate 5768.299235 MB/sec
spartan-bm103 spartan-bm104 5811 394362 MB/sec 1602981 usec

spartan-bm105 spartan-bm106 5820459723 MB/sec 1.580978 usec

spartan-bm107 spartan-bm108 5810.23413 MB/sec 1.601467 usec

spartan-bm109 spartan-bm110 5810.267862 MB/sec 1.597509 usec

spartan-bm111 spartan-bm112 5813.247195 MBisec 1.574459 usec

spartan-bm113 spartan-bm114 5768.299235 MB/sec 1.618988 usec

spartan-bm115 spartan-bm116 5805972055 MB/sec 1589477 usec

spartan-bm117 spartan-bm118 5806.26024 MB/sec 159099 usec

spartan-bm119 spartan-bm120 5817 809295 MB/sec 1576496 usec

spartan-bm121 spartan-bm122 5819.359784 MB/sec 1.605484 usec

spartan-bm123 spartan-bm124 5814.133006 MB/sec 1.583001 usec

spartan-bm124 spartan-bm125 5814 068501 MB/sec 1.571498 usec

spartan-gpgpu023 | ENGBORUDREN

6235.214381 MB/sec | EINNNN usec

20

RoCE — 10500 and GPFS

* To start with, GPFS was not working with RoCE due to vlan for GPFS not being
native (Dale’s talk)

RESULT-invalid] BW

RESULT]
RESULT]
RESULT]

RESULT-invalid] IOPS phase 1

[
[
[
[
[
[RESULT]
[RESULT]
[RESULT]
[RESULT]
[RESULT]
[RESULT]
[RESULT]

BW phase
BW phase
BW phase

I0PS phase
I0OPS phase
I0OPS phase
I0PS phase
I0OPS phase
I0OPS phase
I0PS phase

2
3
4

00 =] On LA B Ld BJ

phase 1

ior_easy write
ior_hard write
ior_easy_read
ior_hard_read
mdtest_easy write
mdtest_hard write
find
mdtest _easy_stat
mdtest _hard stat
mdtest_easy_delete
mdtest _hard_read
mdtest _hard_delete

. 875
. 648
. 245

. 649
420
. 136
. 927
. 949
. 132
. 861

35

15.648 GB/s :
GB/s :

GB/s !
GB/s :

68.010 kiops :
kiops : time
kiops : time
kiops : time
kiops : time
kiops : time
kiops : time
kiops : time

446

80
50

.21
90.
69.

119.

55
23
28

.11

seconds
seconds
seconds
seconds
seconds
seconds
seconds

time 199.82 seconds
time 2340.00 seconds
time 126.78 seconds
time 148.71 seconds
time 42.65 seconds
374.
115.

21

RoCE — 10500 and GPFS

* Enabling RoCE

[RESULT-invalid] BW phase 1 ior_easy write
seconds

[RESULT] BW phase 2 ior_hard write
[RESULT] BW phase 3 ior_easy_read
[RESULT] BW phase 4 ior_hard_read
[RESULT-invalid] IOPS phase 1 mdtest_easy_write
seconds

[RESULT] IOPS phase
[RESULT] IOPS phase
[RESULT] IOPS phase
[RESULT] IOPS phase
[RESULT] IOPS phase
[RESULT] IOPS phase
[RESULT] IOPS phase

mdtest _hard write
find

mdtest easy_stat
mdtest _hard_stat
mdtest_easy_delete
mdtest _hard_read
mdtest_hard_delete

00 =) 00 LA B Ll b

13.
103,
139,
138.

69.
131.

17.

. 249
217
. 740

989
780
283
733
651
654
00e

17.914 GB/s : time 174.44

GB/s : time 702.60 seconds
GB/s : time 109.35 seconds
GB/s : time 63.91 seconds
127.714 kiops : time 17.51

kiops : time 382.92 seconds
kiops : time 7@.76&6 seconds
kiops : time 15.59 seconds
kiops : time 48.28 seconds
kiops : time 38.51 seconds
kiops : time 41.64 seconds
kiops : time 324.98 seconds|

* All results are faster, but especially mdtest

e Latency is much lower when RoCE enabled (approx. 1.6us)

22

GPFS

CephFS

[RESULT-invalid] BW
seconds

[RESULT] BW phase 2
[RESULT] BW phase 3
[RESULT] BW phase 4

[RESULT-invalid] IOPS
seconds

[RESULT] IOPS phase
[RESULT] IOPS phase
[RESULT] IOPS phase
[RESULT] IOPS phase
[RESULT] IOPS phase
[RESULT] IOPS phase
[RESULT] IOPS phase

00 = N WA B Ll B

phase 1 ior_easy write 17.914 GB/s : time 174.44
ior_hard write 0.249 GB/s : time 702.60 seconds
ior_easy_read 28.577 GB/s : time 109.35 seconds
ior_hard_read 2.740 GB/s : time 63.91 seconds

phase 1 mdtest_easy write 127.714 kiops : time 17.51

mdtest _hard write 13.989 kiops : time 382.92 seconds
find 103.780 kiops : time 7@.76 seconds

mdtest _easy_stat 139.283 kiops : time 15.59 seconds
mdtest _hard_stat 138.733 kiops : time 48.20 seconds
mdtest_easy_delete 69.651 kiops : time 3B.51 seconds
mdtest _hard_read 131.654 kiops : time 41.64 seconds
mdtest_hard_delete 17.000 kiops : time 324.98 seconds|

[RESULT]BW phase 1
[RESULT] BW phase 2
[RESULT] BW phase 3
[RESULT] BW phase 4

[RESULT-invalid] IOPS phase 1

seconds

[RESULT] IOPS phase 2
[RESULT] IOPS phase 3
[RESULT] IOPS phase 4
[RESULT] IOPS phase 5
[RESULT] IOPS phase 6
[RESULT] IOPS phase 7
[RESULT] IOPS phase 8

6.283 GB/s : time 461.65 seconds
0.156 GB/s : time 1122.71 seconds
41.064 GB/s : time 70.63 seconds
0.359 GB/s : time 487.15 seconds
6.872 kiops : time 292.20

lor_easy_write
ior_hard_write
ior_easy_read
ior_hard_read

mdtest_easy_write

mdtest_hard_write 6.762 kiops : time 318.28 seconds
find 131.290 kiops : time 31.58 seconds
mdtest_easy_stat 18.632 kiops : time 108.67 seconds
mdtest_hard_stat 15.759 kiops : time 137.41 seconds
mdtest_easy_delete 4.451 kiops : time 450.88 seconds
mdtest_hard read 3.958 kiops : time 543.12 seconds
mdtest_hard_delete 4.577 kiops : time 470.17 secondq

23

Road to production

* Data migration
e CephFS had 1.2PB data, and 1250 top level directories
e 3 simultaneous rsync running on 8 nodes, starting from Monday every week for 6 weeks
* Average of 1.5 days to get into sync
* Any more rsyncs caused CephFS MDS to OOM - kind of validates our need to move to new FS
* No major issues seen

* Flash tier
* 150TB flash tier put as default pool in front of SAS pool
* Go live
e 3 day maintenance window — OS, OFED and Cumulus update
* Unmount CephFS everywhere, add Spectrum Scale
* Finish data migration
* Finished on time, and a full 1 day of additional testing

* Go live
* Within 15 mins of opening login nodes to users they started crashing and rebooting

» /var/crash showed segfault in setacl GPFS routine
1642.0806978] Call Trace:

rFreeeerraTarreEerreErrreTEraE e

1642.
1642.
1642.

1642

1642
1642

PR9437]
0157221
022699]

.029931]
1642.
1642.
1642.

B36388]
043190]
049551]

.055318]
.062310]
1642.

P68433]

Road to production

[<ffffff1f97ab7742>] 7 posix_acl _from xattr+ox82/0x190
<ffffffffc1l4ccId>1 gpfs_set posix_acl+@xad/0x330 [mmfslinux]
<ffifffffc114e055>]1 ? gpfs_get posix_acl+0x1a5/0x330 [mmfslinuxl
<ffifff1f979ee5e9>1 7 do_read_fault,isra.63+0x139/0x1b0

[

E

[<ffffff1fc114d064>] gpfs_i_setxatlr+0x144/0x610 [mmfslinux]
Eﬁjfffffffglpagggg?] 7 radix_tree_lookup_slot+@x22/0x58
[
[
[

+++++++++++

<ffffffff979cPedd>] ? filemap_fault+@8x17d/0x420

EREEE

<ffffffffcll4e34b>1 7 gpfs_i_getxattr+0x16b/0x6c@® [mmfslinux]
<ffifffffc07a9374>]1 7 xfs_iunlock+0x114/0x120 [xfs]
<ffffffffc079299%>] 7 _xfs_filemap_fault+0x8e/0x1de [xfsl|

* Never occurred in 2 months of testing with the same kernel/OFED/gpfs packages — of
course users trigger it ©

* Were running 5.0.4-3, fixed in 5.0.4-4

25

3 weeks in

Users asked for feedback
* We know I/O should be MUCH better on login node — only 1 commented
* Can give out more quota, which is what users like

Love the GUI

* My 3x daily monitoring page

* Acts like Nagios too — get emails sometimes from GPFS before Nagios picks it up
Spectrum Discover

* We have SD doing scans, and will become useful, especially to identify users with the
same dataset that can be put into shared area

Policy engine
e Used to find core.XXXX files and delete

Overall server data rate w
Fram: Aug 18, 2020
To: Aug 18, 2020

20
Bytes Read: {
.3_3 0 Bytes Written: i
G}
20

Overall server data rate

I Bytes Read

10
- I Bytes Written
@ 0
G

10

09:45 10 AM 10:15 10:30
spartan-gpgpu086-hs.ss.stor... + Healthy 15% 3.18 38.8% 0 bytes/s
15.6% 3.86 70.5% 1.97 MiB/s

spartan-gpgpu080-hs.ss.stor... + Healthy

scrosby@unimelb.edu.au

961 MiB/s

896 MiB/s

27

