

Challenges and Migrations with Spectrum Scale at Heidelberg University

Oliver Mattes, Sven Siebler – IBM Spectrum Scale Strategy Days 2020

Agenda

- Heidelberg University and their researchers
- ► Scientific Data Storage Service
- Storage Hardware, funding and procurement
- ► Using Spectrum Scale Encryption
- Disaster Recovery with AFM-DR
- Planned Data Migration with AFM
- ▶ Lessons Learned

Heidelberg University

Scientific Environment

- ► Founded in 1386, oldest university in today's Germany
- ▶ 12 Faculties, ~28 700 students, ~14 000 employees and 527 professorships
- ► Successful in the German Excellence Initiatives
- ► 2 Medical Faculties (Heidelberg, Mannheim)
- 2 University Medical Centres
- Cooperations with other Universities, Industry and Business
- ► High international Cooperations and Exchange

Changing Workflows

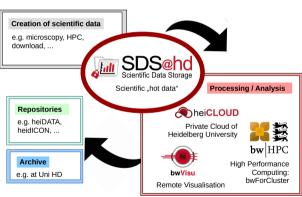
Growth of Scientific Data

- ▶ Our users: Researchers of Medicine, Biology, Physics,...
- ► Generating, storing, processing/analyzing and archiving
- Previously on paper, usb drives, external harddisks, small NAS
- Explosion of the amount of data, e.g. because of increasingly powerful systems
 - ► Microscopy: 800 MB, 800 GB or up to 84 TB data per sample
 - Processing time: 2h/sample instead of 60h, automated sample handling
 - Data capacity of TB to PB per year and research group

Challenges:

- ▶ How to store these amounts of data?
- ▶ How to process further this data and where?
- ▶ What to do with the data afterwards?

SDS@hd Scientific Data Storage


Central service of the Scientific Data Life Cycle

- ➤ "Landesdienst" for scientists of Baden-Württemberg universities
- ► "hot data" (current research)
- Central data storage
- Avoid local data-silo effects
- ► Tight combination with other services
- Support of multiple access protocols
 - NFSv4 wih Kerberos
 - ► SMB 2.x. 3.x
 - ► SFTP
- Cross-site usage

Data Life Cycle:

Large Scale Data Faculity LSDF2

Funding, Procurement of Hardware

- Previous System: IBM SONAS, out of service, Capacity reached
- ▶ HW funded by DFG and Baden-Württemberg (Art. 91b GG), 2 Proposals and Funding Rounds
- ▶ Open bidding, official procurement
- Resulting in heterogenous system architecture

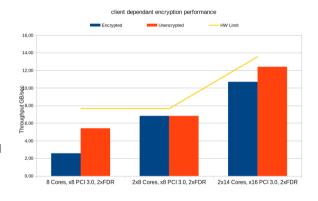
2016-03: HPE Server & Seagate ClusterStor G200 (\rightarrow Cray \rightarrow HPE)	7,8 PB brutto
IBM Spectrum Scale Advanced Edition 4.2 (\rightarrow Encryption)	
2017-07: Dell EMC MD3460 + MD3060e (HW only)	3,6 PB brutto
2019-03: Dell EMC ME4084 + ME484 (HW only)	2,5 PB brutto
2019-10: NEC with Dell EMC ME4084 (HW only)	11,2 PB brutto

- Multiple additional Protocol, Admin and ISKLM Server (HPE and Dell, only HW)
- since 2017: IULA IBM Spectrum Scale Licences (with Helmholtz-Gemeinschaft) currently IBM Spectrum Scale Advanced Edition 5.0
- ► **2017-12:** Quantum Tape Library (~8 PB)
- ► Current total size: 25,1 PB brutto + 8 PB Tape

Encryption

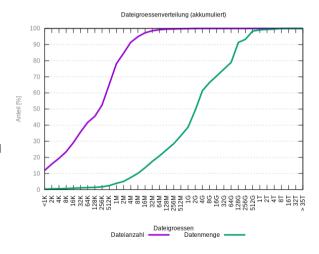
Motivation/Setup

- Needed for some genomic projects and medicine data
- ► Using 3 SKLM Instances
- ► Encryption only "data at rest"
 - Not sufficient for all use cases


Encryption

Motivation/Setup

- Needed for some genomic projects and medicine data
- ► Using 3 SKLM Instances
- ► Encryption only "data at rest"
 - Not sufficient for all use cases
- ► Limitations
 - Performance strongly dependend on CPU ressources

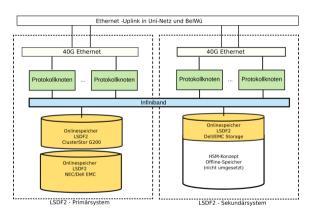

Encryption

Motivation/Setup

- Needed for some genomic projects and medicine data
- ► Using 3 SKLM Instances
- ► Encryption only "data at rest"
 - Not sufficient for all use cases
- Limitations
 - Performance strongly dependend on CPU ressources
 - ► No "data in inode" available!

Goals

Motivation


- Increase service availability
- Prevent restore of data
- ► Using secondary system during regular maintainance windows
- Minimal user impact
- ► Scale out solution (100s Filesets, >100Mio Inodes)
- Simple and reliable, cost efficient

Infrastructure

- Spectrum Scale Advanced Edition
- 4x AFM Gatewaynodes, 4x NFS Nodes (16/28 Cores, 384GB RAM)
- 40GE Ethernet Network and FDR Infiniband
- ► Using NFSv3 export over 40GE
- ► TSM-HSM on secondary site to tape
- r/w primary system (Cache)
- r/o secondary system (Home)

Issues/Limitations

CES Stack makes it complicated

- "mmcesdr" for protocol failover
 - Code level has to be the same on primary/secondary
 - Not working reliable (in our tests)
 - ► IBM: deprecated feature
- Own implementation of protocol failover/failback needed (REST API)
 - Creating afm-relationships
 - correct en-/disable user access (prevent data corruption!)
 - Maintain/synchronize CES exports
 - Creating psnaps
 - ٠..

Use-Case - G200 Upgrade

Failover (mmafmctl failoverToSecondary)

- Planned downtime of 5 days
- ► Failover needs 3min per fileset (~ 5-6h in total)
- User access over secondary system without problems

Failback (mmafmctl failbackToPrimary)

- works out of the box in 80% of the filesets
- ▶ Balancing Gateway/NFS nodes is difficult (5.x: afmHashVersion)
- $\blacktriangleright \ \ \ \ \ \ \ \ \, \text{Large filesets (>50Mio\ Inodes) could not failback} \rightarrow RoleReversal\ needed$
- ⇒ Failback finished in total after 3 months, but no user disruption

Planned Data Migration

 $\textbf{LSDF2} \rightarrow \textbf{LSDF2.2}$

Goals/Aims/Tasks

- ► New filesystem update version (v4 → v5)
- ▶ Unencrypt most data
- Minimal user disruption

Planned Data Migration

using AFM (Local Update Mode)

Goals/Aims/Tasks

- New filesystem update version (v4 → v5)
- Unencrypt most data
- ► Minimal user disruption

AFM Advantages

- Expecting good performance via RCM
- Prefetching of "hottest" data possible
- Remaining data will be migrated after switching to new system (transparent)
- Minimal downtime for users, no additional changes needed
- ► Local-Update reduces data synchronisation to G200
- ► Snapshots on G200 still available

Lessons Learned

Hardware

- "Closed" appliances could be problematic
- ▶ If possible use only hardware, to ensure homogenous software stack over time

Encryption

- ▶ using only for specific use cases! mostly client-site encryption is the better solution
- no security benefit, if disks stay on site

AFM-DR

- use fast SSDs for meta data, even on secondary site!
- ► large filesets needs special treatment
- ► experience is important
- it does work, but expect the unexpected

Thank you for your attention! Questions?

► SDS@hd: https://sds-hd.urz.uni-heidelberg.de

Challenges and Migrations with Spectrum Scale at Heidelberg University

Oliver Mattes, Sven Siebler – IBM Spectrum Scale Strategy Days 2020

