THE STORAGE LAYER IN THE NVIDIA DGX **SUPERPOD**

HPCXXL 2019 Summer Meeting Spectrum Scale/GPFS User Group 9/23/19

Jacci Cenci, Technical Marketing Engineer, NVIDIA Systems Engineering "As the pioneer in both AI and autonomous control, NVIDIA has continued to push the innovation boundaries for both the car and development platforms. NVIDIA just took that innovation to a new level with a turnkey data center called the DGX SuperPOD that ranks as number 22 on the list of global supercomputers."

- Jim McGregor, Forbes

"In a clear demonstration of why artificial intelligence leadership demands the best compute capabilities, NVIDIA has unveiled 'the world's 22nd fastest supercomputer' - DGX SuperPOD - which provides AI infrastructure that meets the massive demands of the company's autonomous-vehicle deployment program."

- Mai Tao, Robotics & Automation

AI LEADERSHIP STARTS WITH AI COMPUTING LEADERSHIP

Researchers racing to advance AI for the world's largest industries - auto, healthcare, manufacturing

Increasingly complex AI models and larger data size demand powerful computers

Iteration speed and time-to-train fuels innovation

NVIDIA created DGX SuperPOD to serve as the essential instrument of AI research

EXPONENTIAL GROWTH IN COMPUTING DEMAND

AI RESEARCH GROWING

DATA SIZE GROWING

Papers Submitted to NeurIPS & CVPR

AI MODEL COMPLEXITY GROWING

NVIDIA'S MOTIVATION

- AI leadership demands AI computing infrastructure leadership
- Attract world leading researchers to do groundbreaking work
- Assert industry leadership through groundbreaking performance win MLPerf
- Explore and innovate infrastructure advancements in networking, storage, cooling, power delivery
- Platform to optimize large scale distributed computing stack

• At NVIDIA, we built DGX SuperPOD to address these motivations

DL TRAINING RAPID PROGRESS

ResNet50 v1.5 training

ANNOUNCING NVIDIA DGX SUPERPOD

AI LEADERSHIP REQUIRES AI INFRASTRUCTURE LEADERSHIP

Test Bed for Highest Performance Scale-Up Systems • 9.4 PF on HPL | ~200 AI PF | #22 on Top500 list • <2 mins To Train RN-50

Modular & Scalable GPU SuperPOD Architecture

• Built in 3 Weeks

Optimized For Compute, Networking, Storage & Software

Integrates Fully Optimized Software Stacks
• Freely Available Through NGC

Autonomous Vehicles | Speech AI | Healthcare | Graphics | HPC

DGX SUPERPOD AI SOFTWARE STACK

NGC: GPU-OPTIMIZED SOFTWARE HUB

Simplifying DL, ML and HPC Workflows

TensorFlow | PyTorch | more

RAPIDS | H2O | more

NAMD | GROMACS | more

ParaView | IndeX | more

From Concept to World-Record Setting Supercomputer in Three Weeks

The CIRCE Supercomputer and The MLPerf Benchmark Suite

- The MLPerf benchmark suite can be used as a proxy to characterize the performance of GPU-based computer systems.
- Developed with support from over 40 commercial and academic organizations including NVIDIA, Google, Microsoft, Facebook, Intel, AMD, Stanford, and Harvard.
- MLPerf is the first benchmark covering such a broad range of Al algorithms and is representative of many of the workloads in use across industry, research and government.

NVIDIA DGX 2 - CIRCE - 2019-02-15

Al Compute	 36 NVIDIA DGX2 Nodes 576 Tesla V100 SXM3 GPUs 18.4 TB of HBM2 memory 72 petaFLOPS via Tensor Cores 	
Networking	 324 EDR/100 Gbps ports Eight connections per node 216 EDR/100 Gbps ports Two connections per node Each DGX-2 server has ethernet connections to both switches 	
Storage	 IBM Elastic Storage Server (ESS) GS4S 276 TB raw storage > 40 GB/s read performance 	

THE CIRCE SUPERCOMPUTER

Network Topology

DGX-2H STORAGE AND CACHING

Hierarchy

Storage Hierarchy Level	Technology	Total Capacity	Read Performance
RAM	DDR4	1.5 TB per node	> 100 GB/s
Internal Storage	NVMe	30 TB per node	> 15 GB/s
High-Speed Storage	IBM SPECTRUM SCALE using SSD	276 TB	> 40 GB/s aggregate> 15 GB/s per node
Long Term Storage	NFS using SSD	> 1 PB	10 GB/s aggregate 1 GB/s per node
Home	NFS using NVMe	30 TB	N/A

NVIDIA DGX SUPERPOD

Al Compute	 96 NVIDIA DGX2 Nodes 1,536 V100 GPUs 192 PF Peak 49 TB HBM2 memory
Networking	 1 Terabit Data Bandwidth per Node 10 Mellanox EDR InfiniBand per Node
Networking	 Fully Connected EDR InfiniBand Switch
Storage	 IBM Spectrum Scale - 554 TB total flash storage 8 storage disk shelves and two ESS nodes with 1 management server 26 IB ports allocated to the management server and ESS nodes for client data and inter cluster traffic 100 Gbps ports are allocated on the management server. 6 - 1 Gbps or 10 Gbps ethernet ports are allocated for BMC/XCAT. Note: this is an allocation on the internal switch for the appliance.

THE DGX SUPERPOD

Network Topology

DGX-2H STORAGE AND CACHING Hierarchy

Storage Hierarchy Level	Technology	Total Capacity	Read Performance
RAM	DDR4	1.5 TB per node	> 100 GB/s
Internal Storage	NVMe	30 TB per node	> 15 GB/s
High-Speed Storage	IBM SPECTRUM SCALE using SSD	552 TB	> 80 GB/s aggregate > 15 GB/s per node
Long Term Storage	NFS using SSD	> 1 PB	10 GB/s aggregate 1 GB/s per node
Home	NFS using NVMe	30 TB	N/A

NVIDIA DGX-2

The World's Most Powerful AI Computer

2 PFLOPS | 512GB HBM2 | 10kW | 350 lbs

800 Gb/s per node

NVIDIA DGX SUPERPOD

Terabit-Speed InfiniBand Networking per Node

Mellanox EDR 100G InfiniBand Network

Mellanox Smart Director Switches

In-Network Computing Acceleration Engines

Fast and Efficient Storage Access with RDMA

Up to 130Tb/s Switching Capacity per Switch

Ultra-Low Latency of 300ns

Integrated Network Manager

White paper: https://nvidia.highspot.com/items/5d073ad681171721086b2788

Rack 1

Rack 16

Compute Backplane Switch Storage Backplane Switch

INSTANT AI INFRASTRUCTURE

Tackling the Most Complex AI Problems with a Proven Solution that's Easy to Deploy

Installed and operational in 2 weeks

Record-breaking performance "out of the box"

Fully integrated and optimized AI HPC stack for max performance and productivity

Fast today, faster tomorrow as NVIDIA continues to create optimized algorithms

NVIDIA DGX SUPERPOD BREAKS AI RECORDS

MLPERF 2019

Record Type	Benchmark	Record
Max Scale	Object Detection (Heavy Weight) Mask R-CNN	18.47 Mins
(Minutes to	Translation (Recurrent) GNMT	1.8 Mins
Train)	Reinforcement Learning (MiniGo)	13.57 Mins
	Object Detection (Heavy Weight) Mask R-CNN	25.39 Hrs
	Object Detection (Light Weight) SSD	3.04 Hrs
Per Accelerator (Hours to Train) _	Translation (Recurrent) GNMT	2.63 Hrs
	Translation (Non-recurrent) Transformer	2.61 Hrs
	Reinforcement Learning (MiniGo)	3.65 Hrs

Per Accelerator comparison using reported performance for MLPerf 0.6 NVIDIA DGX-2H (16 V100s) compared to other submissions at same scale except for MiniGo where NVIDIA DGX-1 (8 V100s) submission was used | MLPerf ID Max Scale: Mask R-CNN: 0.6-23, GNMT: 0.6-26, MiniGo: 0.6-11 | MLPerf ID Per Accelerator: Mask R-CNN, SSD, GNMT, Transformer: all use 0.6-20, MiniGo: 0.6-10

Validated network of colocation service providers DGX-1 and DGX-2 optimized, next-gen data centers Cost-effective OpEx model for infrastructure hosting

NVIDIA Partners Ready to Host Your DGX SuperPODs

IBM & NVIDIA REFERENCE ARCHITECTURE

VALIDATED DESIGN FOR DEPLOYING DGX AT-SCALE WITH **IBM STORAGE**

Download at https://bit.ly/2GcYbgO

DGX RA Solutions at: https://bit.ly/20pXYeC

In this cutting-edge test environment, I NVME all-flash appliance base Linux OS ally available as part of the Spectrum Sc (ESS) deployments. As configured, each a pair of fully redundant NSD servers wi Scale NVMe all-flash appliance is conne Mellanox SB7800 fabric interconnect sv links to the EDR InfiniBand switch. In ac Spectrum Scale NVMe all-flash applianc management network to Ethernet switc

IP traffic node to node 106E bonded

VLAN XXXX 10GE

TRO EDR (RailO

NVIDIA 3

NVIDIA 2

Figure 12: Solution architecture diagram

The engine to power your AI data pipeline

Introduction:

Artificial intelligence (AI) - including deep learning (DL) and machine learning (ML) - is the engine rapidly powering innovation across industries from healthcare to autonomous vehicles and agriculture. By 2020, IBM® projects that the world's volume of digital data will exceed 44 zettabytes.1 Organizations that recognize the value of their data for decisions and actions are turning to DL systems that can rapidly ingest, accurately interpret, and quickly provide key data insights from the volumes of new data generated now and in the future

Enterprises are increasing investment in AI research and innovation, with related patents growing more than 30% and academic papers by 13% during the last decade.² Arguably, only one kind of enterprise will survive and thrive in the future - the data-driven enterprise.

Highly performant and scalable DL systems must excel at data ingestion. data preparation, data training, and verification, and deliver inferences and classifications while handling the growing demands of DL in the organi-Inifini band Fabric

IBM SpecturmAI NVMe all-flash appliance

THANK YOU!

DGX SUPERPOD AND IBM SPECTRUM SCALE AI

Instant AI HPC Infrastructure

BACKUP SLIDES

Deep Learning Models Increasing in Complexity

Next-Level Use-Cases Require Gigantic Models

Number of Parameters by Network

DEEP LEARNING DATASETS INCREASING IN SIZE

- Advances in unsupervised learning allow for training DL models on large amounts of non-annotated data
 - Language model data: BooksCorpus (800 million words), English Wikipedia (2.5 billion words), multi-language Wikipedia, WebText (OpenAI, 8M documents, 40 GB of text)
 - Data for GAN training: unlabeled images and videos
- Labeled data also increasing:

-

- From ImageNet (2012) 1.3M Images on 1000 categories to Open Images (2019) 9M Images on 6000 categories
- Semi-autonomous vehicles generate 20~40MB of image data per second, or 0.5~1.1TB of data for every 8h of driving.

WHY MULTI-NODE TRAINING?

ABCi Supercomputer Japan AIST ~550 Petaflop/s

p3dn.24xlarge cloud instances ~64 Petaflop/s NVIDIA DGX SaturnV 1.8 Exaflop/s

Would roughly take 1-30 days to train AlphaGo Zero

AT SCALE MLPERF TRAINING

Smashing Time to Train From 8 Hours to 80 Seconds On V100

Enterprise NLP Trend

Unstructured content represents as much as 80% of enterprise information resources.

A recent Gartner Research Circle survey on data and analytics trends shows that organizations are **actively developing text analytics** as part of their data and analytics strategies.

80% of survey respondents either have text analytics in use or plan to use it within the next two years.

Piloting/building Already implemented/in use Plan to use within the next 3 years Plan to use in more than 3 years No plans Language translation (n = 418) 5% 1% 23% 55% 16% 5% 2% Speech to text (n = 419) 22% 52% 19% Text to speech (n = 416) 25% 47% 19% 6% 3% Text mining/analytics (n = 415) 27% 41% 23% Natural language generation (n = 417) 4% 4% 28% 41% 23% Chatbots or virtual assistants (n = 5% 4% 27% 40% 24% 415) 0% 50% 100% Percentage of Respondents Base: Natural language processing is piloting/deployed. Excludes not sure, n = varies Q11A. What is the stage of adoption within your organization of the following NLP (natural language processing) artificial intelligence (AI) categories? © 2018 Gartner, Inc. ID: 369018

Enterprises Exploring Speech and Natural Language Technologies

BERT: Flexibility + Accuracy for NLP Tasks

9th October, Google submitted GLUE benchmark

"BERT is a method of pre-training language understanding" model on a large text corpus care about (like question answering). Sentence Pair ClassificationMNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAGSingle Sentence Classificitaion SST-2, CoLAQuestion AnsweringSQuADSingle Sentence TaggingCoNLL-2003 NER

BERT outperforms previous methods because it is the first unsupervised, deeply bidirectional system for pre-training NLP."

Super Human Question & Answering

9th October, Google submitted GLUE benchmark

- Sentence Pair Classification: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG
- Single Sentence Classification: SST-2, CoLA
- Question Answering: SQuAD
- Single Sentence Tagging: CoNLL 2003 NER

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Two paths to use BERT

Resources:

- <u>NGC Model Scripts</u>: Single Node & Multi node (4 x DGX, 16 x DGX and 64 x DGX) for Pre-training and Fine-tuning
- Deep Learning Examples GitHub

BERT Multi-node Performance Metric Time to Train

DGX-1 (16 GB)	GPUs	Time to train (Hrs)		DGX-2H (32 GB)	GPUs	Time to train (Hrs)
1	8	153.6 (6.3		1	16	58.4 (2.4 days)
		days)		4	64	15.4
4	32	39.3		16	256	3.9
16	16 128 10.4	64	1024	1.2		
				02	4 4 7 0	

Source: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT#pre-training-loss-results

* Above time to train is measured for Mixed precision, training loss 1.3 in PyTorch; with LAMB optimizer

** Gradient accumulation is applied to DGX-2H 1,4,16 node

*** 92 DGX-2H results is not yet published to NGC/DeepLearningExamples. For details, please refer to this blog: Fastest training BERT

Multi-node Requirements

SINGLE NODE NGC DL FW CONTAINER SOFTWARE STACK

- Deep Learning Model:
 - Model hyperparameters tuned for multi-node scaling
 - Multi-node launcher scripts
- Deep Learning Container:
 - Deep learning framework, NVIDIA libraries and multi-node software
- Host:
 - Host OS (DGX OS), GPU drivers, IB driver, container runtime engine (docker, enroot)

ENABLE MULTI-NODE DEEP LEARNING

• DGX POD Cluster Stack

- <u>Slurm</u>: Scheduling for user job management
- <u>Enroot</u>: NVIDIA-developed tool to convert traditional container/OS images into unprivileged sandboxes
- <u>Pyxis</u>: NVIDIA-developed plugin that integrates Enroot with Slurm

• <u>DeepOps</u>: NVIDIA-developed toolbox for GPU cluster management w/Ansible playbooks

CUSTOMER CALL-TO-ACTION Try Multi-Node BERT and give feedback

- Build your own GPU cluster following the <u>DGX Pod</u> and <u>DGX SuperPOD</u> reference architectures.
- Clone the DeepOps <u>repo</u> and follow the cluster setup <u>guide</u>. Open a <u>GitHub</u> issue if any problem.
- Clone the NVIDIA Deep Learning Example repo download a pre-trained BERT model from NGC and fine-tune for your NLP task
 - Provide feedback back to the Tesla product management teams on what's working well and any challenges

-