NERSC

National Energy Research Scientific Computing Center

Ravi Cheema Kristy Kallback-Rose

NERSC Storage Systems Team September 24, 2019

- General NERSC & Systems Overview
- Storage 2020 Strategy & Progress
- GHI Testing
- Tape Library Update
- Futures

NERSC & Systems Overview

NERSC is the mission HPC computing center for the DOE Office of Science

- HPC and data systems for the broad Office of Science community
- Approximately 7,000 users and 870 projects
- Diverse workload type and size
 - Biology, Environment, Materials, Chemistry, Geophysics, Nuclear Physics, Fusion Energy, Plasma Physics, Computing Research

NERSC - Resources at a Glance 2019

Storage 2020 Strategy

NERSC

NERSC Storage 2020: Design goals

• Target 2020

- Collapse burst buffer and scratch into all-flash scratch
- Invest in large disk tier for capacity
- Long-term investment in tape to minimize overall costs

• Target 2025

- Use single namespace to manage tiers of SCM and flash for scratch
- Use single namespace to manage tiers of disk and tape for long-term repository

- 8 -

Storage 2020: A Vision for the Future of HPC Storage https://escholarship.org/uc/item/744479dp

NERSC Storage 2020: Implementation

Selected Solution

- Technology Details
- Setup & Configuration
- Implementation Status
- Data Migration Plans

ESS GL8c Rack Layout

4U

4U

Science

7

8

1

- Spectrum Scale (aka GPFS): same as /project
- 57 PB usable space, aggregate bandwidth of 100 GB/s
- Denser system ~10PB per rack (project was 1PB per rack), leaves room for expansion, more power efficient

Production System:

- 7 Racks
 - 11.8 PB per rack 0
- + ESS Management System

Test System:

- 2U NSD Servers (2)
- 4U Enclosures (2)
- ESS Management System (1)

Deployment Timeline

- Process started in late 2017, team led by Kristy w/other NERSC teams
 - Initial meetings with vendors, and Q&A
- RFP released to vendors September, 2018
 - Vendor responses received and evaluated by team
- IBM proposal selected December, 2018
- Contract negotiations completed July 16, 2019
- First equipment delivered to NERSC July 17, 2019
 - Assembly and vendor testing
- Benchmarking tests August 26, 2019
 - 50 nodes for IOR and MDT tests
- Second round of benchmarks 9/10 9/12
- Once benchmark tests pass, one week availability period begins
 - Staff testing

Challenges

- Hung process on GPFS client while running IOR/mdtest
 - running IOR/mdtest using a common directory but on multiple remote clusters, hangs commands like Is in that directory due to unanswered token revoke requests from a node in another cluster, only way out of this was to expel that node or reboot. Fixed in 5.0.3.3

IB/network connectivity

 Used nsdperf for intial testing of bandwidth between 50 client nodes (1-HCA/node) and 14 ESS I/O nodes (4-HCA/node). Decent performance on one-to-one tests but unable to scale, Continuing to troubleshoot with IBM and mellanox.

• Rack design

 ESS requires a deeper than the a 48 U deep rack. Dimensions and weight of 48U deep rack is seismic certified for NERSC datacenter, certifying any other rack would've required months of design testing/review. Resolved by adding rack extensions to the back of the current rack to accommodate for extended cable arms.

- Chose not to expand the current file system in favor of creating a new one to benefit from new features in SS 5.x layout
 - Larger block size
 - Variant sub-blocks
- This requires a data migration
 - Ruled out AFM
 - we have ~2000 dependent fileset to migrate.
 - Found that AFM wouldn't sync up the timestamp of the directories.
 - Testing rsync/tar using list generated using ILM for initial copy, followed by a final rsync.
 - Testing parallel copy using fpsync/fpart
 - Testing mpifileutils

Tape System Migration Update

U.S. DEPARTMENT OF

HPSS Archive – Two significant needs

Technology decision

- Discontinued Oracle Enterprise Tape Drive
 - 4 Fully configured Oracle SL8500 libraries (archive)
 - 60 Oracle T10KC tape drives (archive)
 - 1 IBM TS3500 (mainly system backups)
 - 36 IBM TS1150 tape drives (mainly system backups)

Physical move required

Oakland to Berkeley (~6 mi/~9 km)

HPSS Archive – Green Data Center Solution

IBM TS4500 Tape Library with Integrated Cooling

- seals off the library from ambient temperature and humidity
- built-in AC units (atop library) keeps tapes and drives within operating spec

HPSS Archive – Tech Change (CRT) Nersc

- Each library has 4 cooling zones
 - 16 frames
 - 64 TS1155/3592-55F(FC)/Jag(uar)6 tape drives
 - ~13,000 tape slots
 - JD media @15TB/cartridge
- We have installed 3 of the above
- Thoughts on TS4500 so far
 - Pro: Integrated cooling and enterprise drives (not LTO)
 - Pro: GUI and CLI are OK but ACSLS (STK) is missed
 - REST API looks promising (testing TBD)
 - Needs work: Some firmware glitches

Now:

- Oakland tapes read-only
- Data migrating to BDC via HPSS *repack* functionality
 - 400Gbps Oakland <-> BDC link
 - >400 TB/day from OSF to CRT (Oracle \rightarrow IBMmedia)
 - Sneakernet: 30PB IBM media moved out of OSF by truck
- 2020 (or earlier, see next slide) data migration complete

HPSS Archive – Status as of Sept. 2019

- Data migration stepped up
 - New goal bulk of data moved by Q1 2020
- Tape volumes processed chronologically
 - Later files are larger, better streaming from tape drives, better data rates.
- Smaller data
 - expect higher error rates on this data
 - More labor intensive

HPSS Archive – Status as of Sept. 2019

	 Petabytes in STK Libraries					
DATE	Total Data Remaining	Daily Ave Since Jan 01	Total Moved	Percent Complete	Expected Completion	
2018-11-21	116.654					
2019-01-01	113.173	0.324	3.481	3	2020-02-14	
2019-02-01	103.987	0.298	12.667	11	2020-03-15	
2019-03-01	96.287	0.287	20.367	17	2020-03-29	
2019-04-01	85.612	0.307	31.042	27	2020-03-05	
2019-05-01	76.808	0.303	39.846	34	2020-03-09	
2019-06-01	66.283	0.311	50.371	43	2020-02-29	
2019-07-01	56.940	0.311	59.714	51	2020-02-29	
2019-08-01	48.436	0.306	68.218	58	2020-03-06	
2019-09-01	33.470	0.328	83.184	71	2020-02-10	

HPSS Archive – Status as of Sept. 2019

New Tape Libraries at Berkeley

Nice article in HPCWire: https://bit.ly/2OwX24N

Not an "S", also not an "S"

GPFS-HPSS-Integration (GHI)

• Optional piece of HPSS

- connects Spectrum Scale/GPFS and HPSS
- automated data movement between the two

• GHI primary functions:

- Space management (current focus)
 - Migrate
 - Purge
 - Recall
- Disaster recovery (maybe later)
 - Backup
 - Restore

- GPFS HSM space management / file migrations
 - GPFS Data Management API (DMAPI) notifies GHI of events
 - HPSS references are stored as GPFS extended attributes
 - GPFS ILM scans and policies
 - ILM scans billions of files in minutes
 - Files are continuously identified and migrated/purged/recalled to/from HPSS per policy
 - If GPFS reaches a space threshold, candidates are purged (stubbed out)
 - When a user requests a file in HPSS, GHI stages it back
 - Small files are aggregated with a tar-like utility to improve performance
 - Policy rules provide robust data management solutions
 - GHI uses the HPSS Parallel I/O (PIO) for parallel access to files stored in HPSS

GHI Use Case: GHI Use Case: ALS Nersc

- Advanced Light Source: Beamline of X-ray light used to examine the atomic and electronic structure of matter
- Data from the beamline streams to NERSC, gets analyzed, and a copy gets put into HPSS, beamline users download their data via Globus Sharing: 400TB on spinning disk, 3 PB in HPSS
- Want to use GHI to automatically store in HPSS while still maintaining their directory structure and to free up space on spinning disk for active analysis

- Collecting QCD simulation data and serving it to scientists (along with descriptive metadata).
 Currently serves data out of HPSS via FTP, which limits the size of datasets they can serve
- GHI will let them store TB-size datasets in HPSS and serve them out via Globus Sharing
 - For large datasets, the time to stage a file is offset by the speedup offered by Globus

GHI – NERSC implementation tweaks

- Wrapper scripts for *user* access to ghi operations
- NERSC client systems can only access GPFS systems via remote cluster mounts.
 - So, user access is only via remote cluster mounts
- As it works today, GHI commands are only available on GHI-enabled *owning* clusters
 - *automatic retrieval* on open available and works on *remote* clusters
 - With few exceptions, GHI commands must be run by root.
 -- so... no file access validation.
- Root wrappers to the rescue!

BERKELEY LAB

- 32 -

GHI – NERSC implementation tweaks

- 5 GHI command wrappers under development
 - can be run by users on remote clusters
 - run as the user and validate user access and operation permission
 - communicate via sockets to proxy running on the GHI owning cluster
 - validated files and operations are passed to the proxy for execution.

- 1. ghi_ls: for ghi_ls to list files
- 2. ghi_pin: for the ghi_pin command
- 3. ghi_put: for a policy engine run to migrate file data to HPSS
- 4. ghi_punch: for a policy engine run to punch holes in files
- 5. ghi_stage: for ghi_stage to retrieve file data from HPSS

GPFS HPSS Integration (GHI) – Where are we now?

Data Migration Results– Orchids and Onions (i.e. what went well, what, um, didn't)

--Data Migration/Orchestration will be important with Perlmutter as data flows between flash, disk and tape tiers.

NERSC Storage Team & Fellow Contributors

Thank you. Questions?

Right to Left: Greg Butler Kirill Lozinskiy Nick Balthaser Ravi Cheema Damian Hazen *(Group Lead)* Rei Lee Kristy Kallback-Rose Wayne Hurlbert

+ Melinda Jacobsen (recently joined the team)

National Energy Research Scientific Computing Center

