

Excelero NVMesh

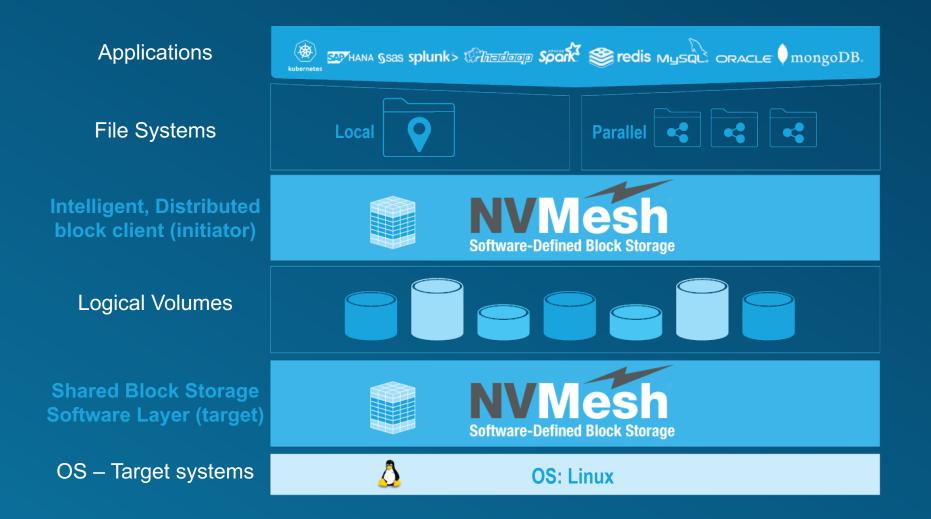
Lowest-Latency Distributed Block Storage for IBM Spectrum Scale

XCelero K 22 * Founded **Experienced Well-funded Strong Patent** Web-Scale in 2014 **Portfolio** Infrastructures **Executive Team** technicolor SCINet (ge (GC) NASA S_{CMA} teuto.net Micron (intel) Lenovo Mellanox Western Digital. SAMSUNG SUPERMICR BROADCOM

NVMesh®

Software-defined Block Storage

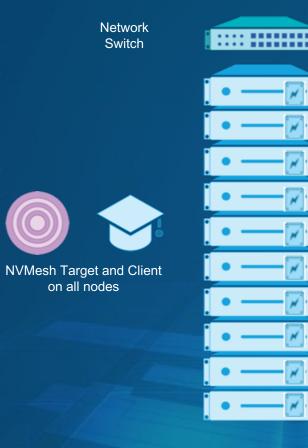
Lowest Overhead


Local Flash Latency across the Network

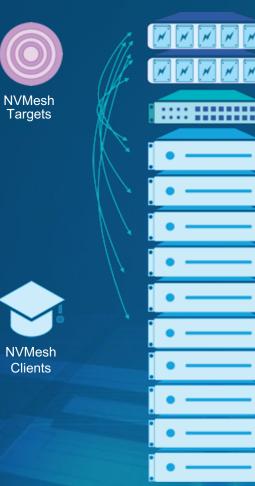
100% Software-defined

Use any Hardware

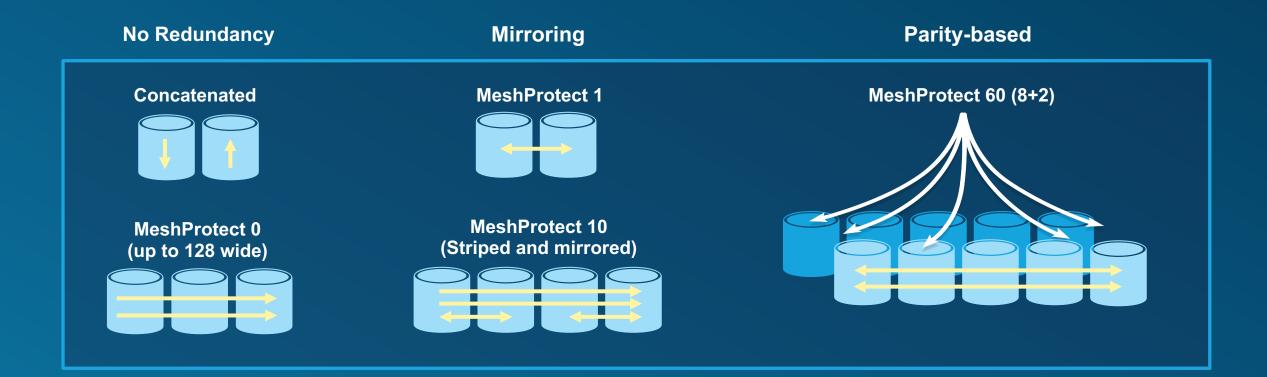
Block Storage Use any File System


Excelero NVMesh Logical Architecture

Flexible, Distributed Deployment Models


Converged - Local NVMe drives in Application Servers

- Single, unified storage pool
- NVMesh client and target running on all nodes
- NVMesh bypasses server CPU
- Various protection levels
- No dedicated storage servers needed
- Linearly scalable
- Highest aggregate bandwidth


Flexible, Distributed Deployment Models

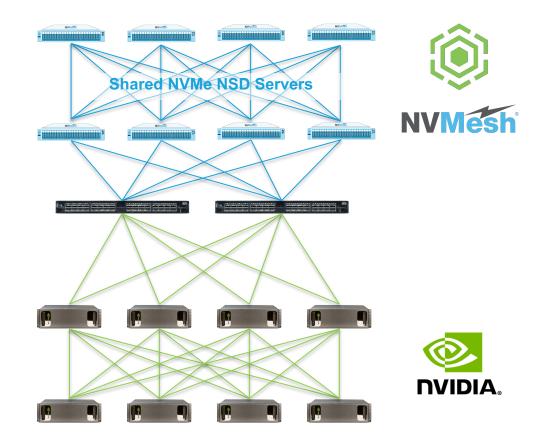
Top-of-Rack Flash

- Single, unified storage pool
 NVMesh Target runs on dedicated storage nodes
 NVMesh Client runs on application servers
 Applications get performance of local NVMe storage
 Various Protection Levels
- Linearly scalable

MeshProtect - Accelerated & Simplified Data Protection

Use-Cases

NVMesh Accelerates Spectrum Scale GPFS


The World's Fastest AI GPU Farms Require an Extremely Capable Storage system

A single NVIDIA DGX-2 is capable of ingesting data at rates of 100GB/s and Millions of IOPS!

It's Hard enough to feed one. How about at data center scale?

Data Center-Scale AI Computation

- Access remote NVMe at local speed
- Distributed and scalable storage infrastructure
- Share storage resources across multiple GPU servers
- Eliminates need to copy data locally
- Datasets can be larger than what can fit inside the DGX
- Zero-CPU usage on both GPU and Storage access

10

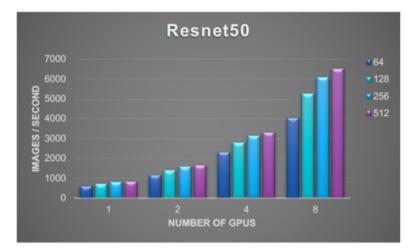
Machine & Deep Learning data input pipeline optimization

Customer Problem:

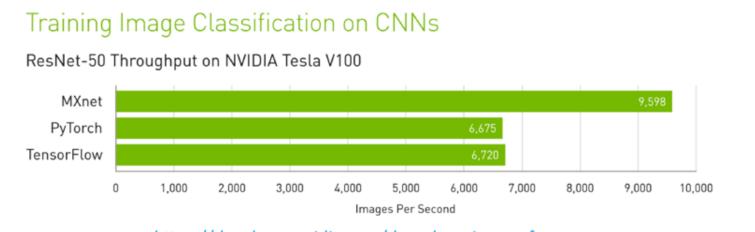
• Certain analytic loads require low latency and/or high IOPs.

Unrestricted pipelining and storage IO, in general, is required to reduce the execution time of learning tasks.

NVMesh Solution Benefits:


- Allows ML/DL workflows to extract and acquire the data required for the learning task at the very lowest latency.
- Enables highly efficient pipelining
- Eliminates CPU, GPU, and TPU data starvation
- Allows to invest into compute resources rather than storage appliances
- Truly SDS HW platform independency

Without pipelining, the CPU and the GPU/TPU sit idle much of the time:


CPU	Prepare 1	idle	Prepare 2	idle	Prepare 3	idle
GPU/TPU	idle	Train 1	idle	Train 2	idle	Train 3
			time			ti
Nith NN/Me	esh accelei	rated nin	elinina			
	minishes s					
CPU	Prepare 1	Prepare 2	Prepare 3	Prepar	Prepare 4	
GPU/TPU	idle	Train 1	Train 2	Train 3		
					N/n Class	
			time			~////

Boston Talyn Server + NVMesh + Spectrum Scale - RESNET-50 Results

Tensorflow DGX-1 Talyn Benchmarks

	Resnet50						
	1	2	4	8			
64	603	1147	2316	4046			
128	730	1408	2808	5281			
256	807	1575	3149	6097			
512	845	1669	3321	6530			

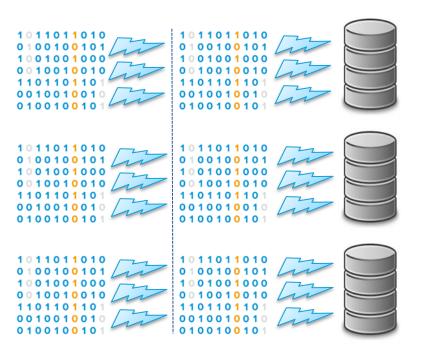
https://developer.nvidia.com/deep-learning-performance

Copyright Excelero 2019 · Confidential · Do Not Distribute

Local Read-Only Cache

- No local flash required
- Flexibility & Granularity
- Lowest Read IO latency
- Highest Read IOPs

Highly-Available Write Cache


- Cost efficient highly available flash
- Flexibility & Granularity
- Lowest Write IO latency
- Higher Write IOPs

Buffer Burst Cache

- Reliable and predictable performance
- Highest sustained write throughput
- Lowest sustained write latency
- Leverage the Buffer Burst Cache resource
 when and where you need it
- Ensure job SLA's and accelerate checkpoints

Customer Success

80 pooled NVMe drives delivers 230GB/s of throughput and 20M random 4k IOPS

Pooling NVMe Within GPFS NSDs enables new Science use-cases

Use Case

- Large-scale modeling, simulation, analysis and visualization
- Visualizes supercomputer simulation data on 100s of compute nodes

Problem

- · Finish check pointing faster and start running the job
- Achieve performance of 230GB/Sec at the lowest price achievable

Solution

NVMesh by Excelero enables SciNet to create a petabyte-scale unified pool of high-performance distributed flash retaining the speeds and latencies of directly-attached media

Questions?

Excelero

Thank you!