NCAR Computational and Information Systems Laboratory

air • planet • people

NCAR Site Update

Spectrum Scale Users Group - US 16 Apr 19

Big data is like teenage sex: Everyone talks about it, Nobody really knows how to do it, Everyone thinks everyone else is doing it, so everyone claims they are doing it

- Dan Ariely

CAR Spectrum Scale Users Group – April 2019

r • planet • *people*

Storage Environment

NCAR | UCAR | Spectrum Scale Users Group – April 2019 *ir* • planet • *people* :

3

NCAR Spectrum Scale Users Group – April 2019

air • planet • people

4

Storage I/O Network

- Network architecture providing global access to data storage from multiple HPC and Service resources
- Flexibility provided by support of multiple connectivity options and multiple compute network topologies
 - 10GBE, 40GbE, 100GbE, EDR
 - Full Fat Tree, Hypercube
- Scalability allows for addition of new HPC or storage resources
- Agnostic with respect to vendor and file system
- Can support multiple solutions simultaneously

The network has become the most critical component of the environment

Storage Connectivity Options

NCAR | Spectrum Scale Users Group – April 2019

air • planet • *people*

6

GLADE Routing

NCAR | Spectrum Scale Users Group – April 2019

air • planet • people 🚽 🛪

NCAR Storage Cluster

Storage Cluster

- 6 management servers
- 40/100 GbE main network

GLADE

- 300 GB/s bandwidth
- 38 PB useable capacity
- 8 DDN 14KXE (10 drawer)
- 6560 8TB drives
 - data only
- 96 800GB SSD drives
 - metadata
- 168 3.52 Flash drives
 - mixed data + metadata

Campaign Store

- 76 GB/s
- 26 PB useable capacity
- 2 DDN 14KXE (20 drawer)
- 3600 10TB drives
 mixed data + metadata
- 8 GPFS NSD servers
- 40 GbE

HPSS Archive

- 10GB/s
- 2 PB front-end cache
- 48 T10KD drives

Spectrum Scale Users Group – April 2019

• planet • *people*

Storage Architecture

Spectrum Scale Multi-Cluster

Storage System Configuration

Allocation & Usage Policies

File Space	Peak Perf	Allocation	Quota	Purge	Backup
home	8 GB/s	by default	25 GB	No	Yes
scratch	300 GB/s	by default	10 TB	90 days	No
work	300 GB/s	by default	ıTb	No	No
flash	300 GB/s	by request	None	2 weeks	No
project	300 GB/s	by allocation		1 year	No
datashare	300 GB/s	by request		45 days	No
Campaign Store	76 GB/s	by allocation		5 year	No
Tape (HPSS)	10 GB/s	by allocation		None	DR

air • planet • *people* 12

Glade Space Usage

Glade Space Usage By File Count

Glade Space Usage By File Size

NCAR Spectrum Scale Users Group – April 2019

vir•planet•people_13

GLADE Performance – Past 6 Years

NCAR | Spectrum Scale Users Group – April 2019

GLADE2 Performance – Past 2 Years

NCAR | Spectrum Scale Users Group – April 2019

Future Architectures

air • planet • *people* 16

Data Storage Challenges

- Archival system ingest rates can't keep up with data production rates
 - Tape is best for long term storage of well tagged and cataloged data
 - For data that can't be reproduced
 - For preservation of published data collections
 - To facilitate better data discovery
- Are there better solutions for short term storage?
 - Data needed during computation only
 - Faster memory/storage layer available during job run
 - Better workflow methods to streamline data output
 - Data with well defined life time
 - What is the useful life span of the data set?
 - At what point is newer data actually more valuable

Data Management Challenges

- We can produce data faster than we can tag, catalog and publish
- How do you find the data you need?
 - Do you have effective tools to manage your data?
 - Do you have a good sense for the data you have archived?
 - Do you have methods for re-evaluating if data is still needed?
- How do you ensure data is deleted when no longer needed?
 - Storage costs require better data management techniques
- What is the effective life time of data collections?
 - At what point does newer data supersede older data sets?
 - At what point is it more effective to reproduce a data set than to store older data?

Data Lifecycle Management

Storage Hierarchy

ICAR Spectrum Scale Users Group – April 2019

iir • planet • *people* 20

Data Hierarchy

21

HPC Data Infrastructure Group NCAR / CISL / HSS / HDIG

Data Services

- High-Performance File Systems

 GLADE Spectrum Scale Storage Cluster
- Data Archival Resources
 - Campaign Store Warm Archive
 - HPSS Cold Archive
- Data Transfer Protocols
 - Globus
 - GridFTP
 - SCP/SFTP
 - HSI/HTAR
- Science Gateway Support
 - RDA/ESG/CDP

Innovative I/O Solutions

- New network technologies
- New storage technologies
- Innovative memory architectures

Staff

- Pamela Hill
- Marc Genty
- Bill Anderson
- Chris Hoffman
- Joey Mendoza
- Zach Mance

NCAR | UCAR | Spectrum Scale Users Group – April 2019

• planet • *people* 22

IBM **Spectrum Scale**

QUESTIONS?

DataDirect

NCAR | Spectrum Scale Users Group – April 2019

air • planet • *people* 23