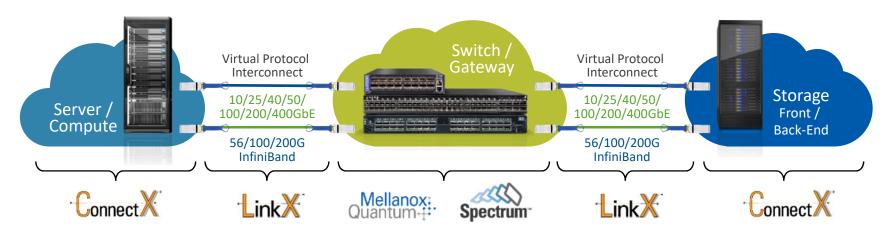


Ethernet Storage Fabric (ESF)

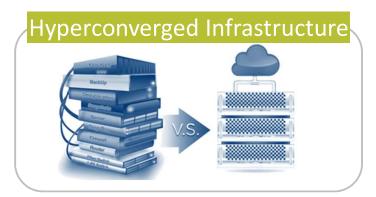

Spectrum Scale User Group 2019

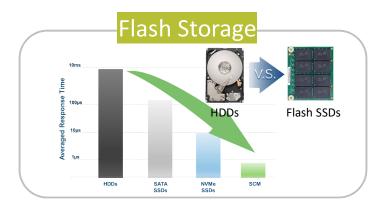
Gadi Godanyan, SE London, May 2019

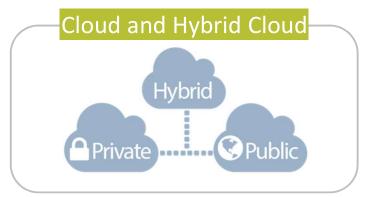
Leading Supplier of InfiniBand and Ethernet End-to-End Interconnect Solutions

The Smart Choice for Intelligent Compute and Storage Platforms

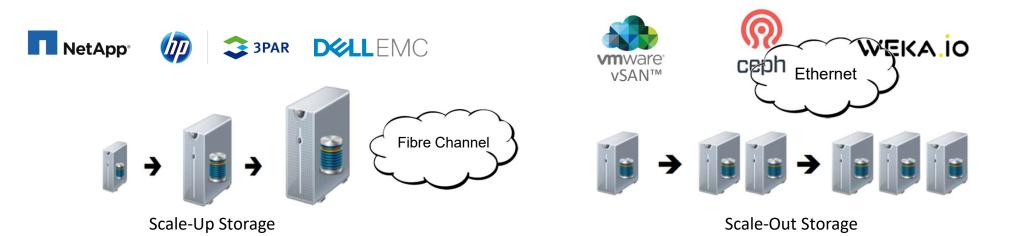
Ethernet Storage Fabric (ESF)Best in class Networking for HCI


The Storage World is Changing



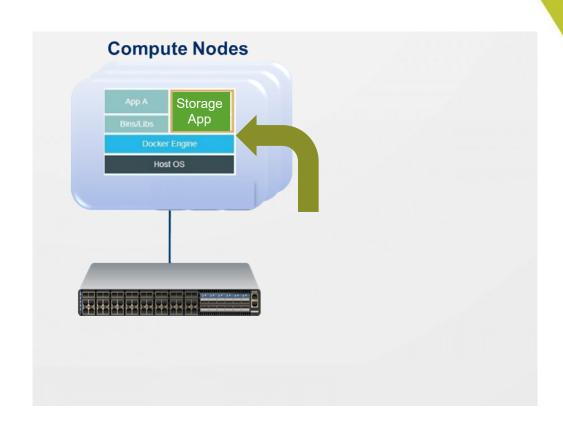

Bottom Line: More Ethernet Storage Traffic

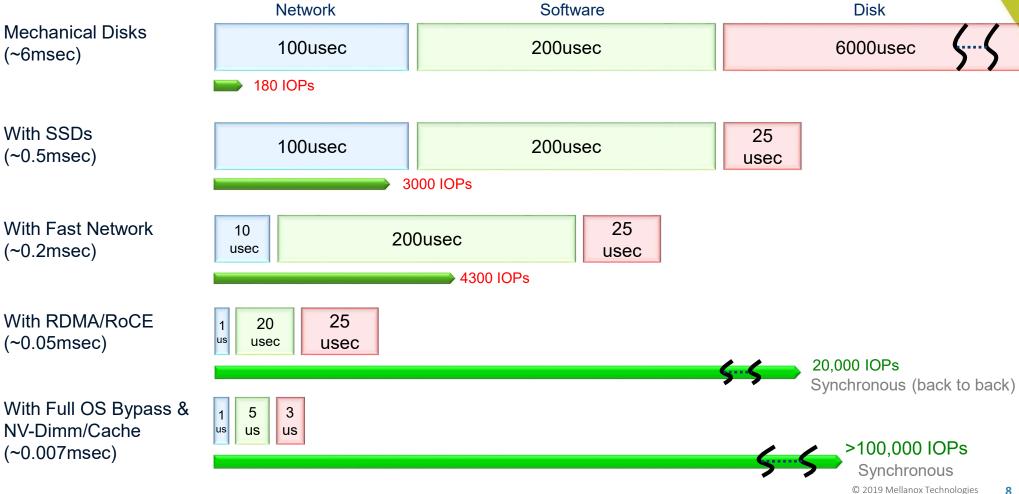
Data Centers Are Changing to Accommodate HCI



Ethernet the de facto Storage Network

Scale-Out Storage Needs Faster Networks


- Clouds abandoned traditional SAN
- Enterprises migrating to a cloud model
- Storage innovation is using the scale-out architecture


Hyperconverged Storage Needs Faster Networks

- Hyperconverged infrastructure (HCI) collapses compute & scaleout storage into one layer
- Faster networks enable higher performance applications

Chasing the Storage (synch) IOPs Bottleneck

Spectrum the Best ESF Switch

Ethernet Storage Fabric needs dedicated storage switches

High Availability

<u>Simple</u>

Automated

<u>Scalable</u>

- ✓ 2 Switches in 1RU
- √ Storage/HCl port count
- ✓ Zero Packet Loss
- ✓ Low Latency
- ✓ RoCE optimized switches (NVMe-oF)
- ✓ NEO for Network automation/visibility
- ✓ Native SDK on a container
- ✓ Cost optimized
- ✓ NOS alternatives

Open Ethernet 25/50/100 Switch Portfolio

SN2010

Optimized 10/25G ToR for HCI and storage

- ½ width ToR
- 18x10/25GbE + 4x40/100GbE
- Supports 1GbE ports

SN2100

Ideal high-speed ToR for HCI and storage

- ½ width ToR
- 16x 40/100GbE
- 32x 50GbE or 64x 10/25GbE
- Supports 1GbE ports

SN2410

10/25GbE ToR for servers and storage

- 48x 10/25GbE + 8x 40/100GbE
- Supports 1GbE ports

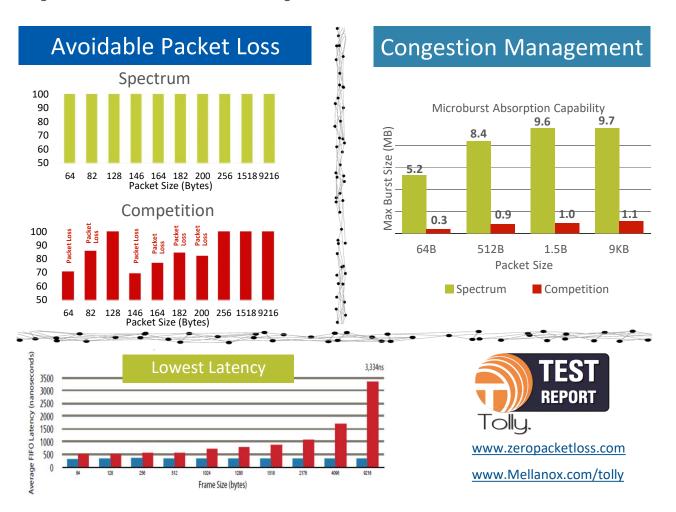
SN2700

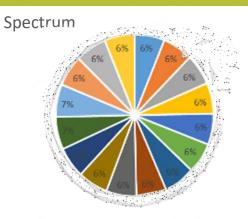
40/100GbE aggregation for servers and storage

- 32x 40/100GbE
- 64x 10/25/50GbE
- Supports 1GbE ports

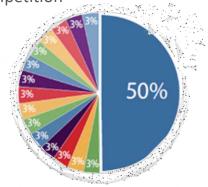
SN3700C 32x100GbE Leaf/Spine

- Up to 128x 25GbE with split cables

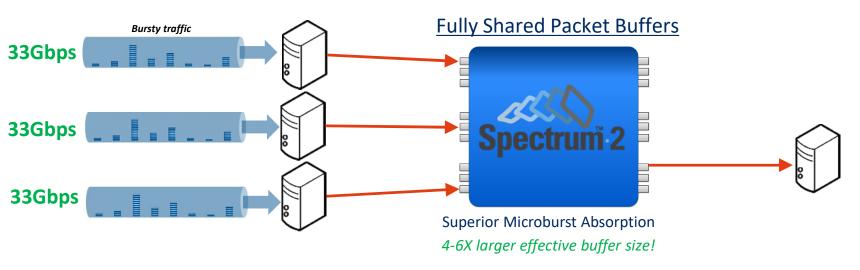


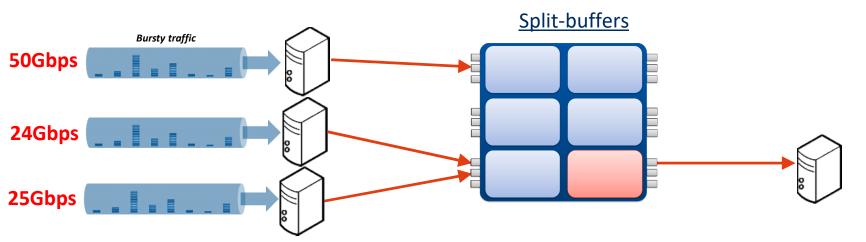


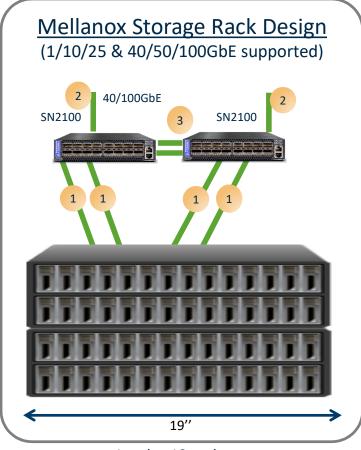
SN3800 64x100GbE Spine/Super-Spine


Spectrum is Purpose-Built for ESF

Fairness & QoS






Fully Shared Buffers

A Typical HCI/NVMe-oF Deployment

1 rack = 18 nodes

10/25 or 40/50/100GbE link: QSFP or SFP (using QSA, DAC or fiber)

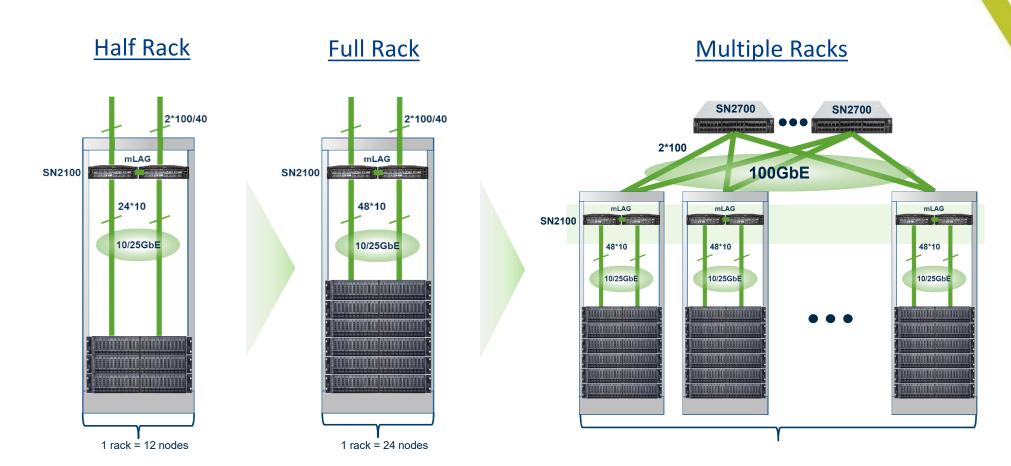
2 1/10/25 or 40/50/100GbE link: QSFP or SFP (using QSA, DAC or fiber)

3 100GbE mLAG Links: QSFP28 to QSFP28

- ½ 19" width, 1RU height
- 16x100GbE

■ 95W max power

■ Any speed from 1-100GbE



Mellanox ESF Scale

Mellanox NEO's Value Proposition

Simplified management, automation and orchestration for Mellanox end-to-end Ethernet portfolio

Partner Storage Solution

Mellanox Empowers Leading Storage Platforms

Microsoft

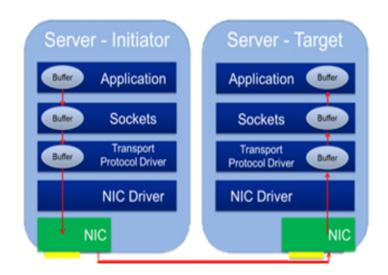
SMB Direct

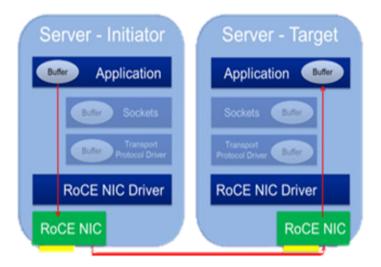
RDMA – Remote Direct Memory Access

Why RDMA is needed?

- Traditional network processing has data copy, utilizes TCP/IP and has significant CPU overhead
- Packets stored in OS memory vs host memory

What is RDMA?


- RDMA is the direct read from or write to an application's memory by use of HW
- RDMA NIC writes data directly to application host memory
- Enables the movement of data between servers with no CPU involvement


Benefits of RDMA

- Higher server productivity cost and power saving
- Provides low latency, high throughput, low CPU usage.
- Offloads CPU network processing (OS TCP/IP stack)
- Avoids data copy between user space and kernel space

- Benefits of RDMA in standard ETH environment
- Open source and formal standard in IBTA
- Available in: Linux, Windows, Vmware and inFreeBSD


Mellanox ESF for RoCE-based Storage

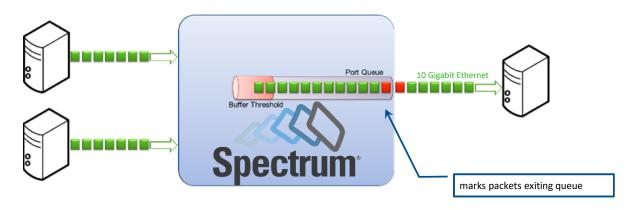
Easy Configuration

Guaranteed QoS

Automated Mgmt

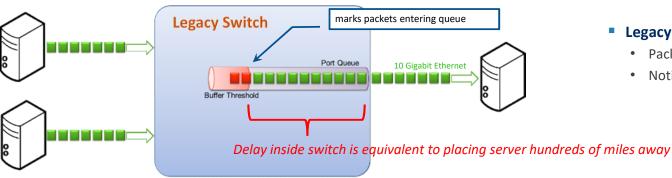
Mellanox ESF Provides E2E RoCE Acceleration

- Zero packet loss, line-rate performance at all packet sizes and port combination
- Predictable buffer allocation to any port & packet sizes
- Low latency, up to 90% latency in a typical TOR deployment scenario



- Highest performance and lowest latency
- Hardware RDMA offload
- Hardware offload of RoCE congestion control
- Hardware offload of data path and NVMe command offload

RoCE Enabled Storage


- iSER
- NVMe-oF
- Microsoft SMB 3.0
- vSphere 6.5
- Ceph
- Spark

Better RoCE with Explicit Congestion Notification

Fast Congestion Notification

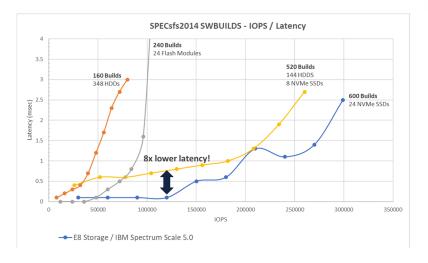
- Packets marked as they leave queue
- Up to 10ms faster alerts
- Servers react faster
- Reduces average queue depth
 - Lowers real world latency
- Improves application performance

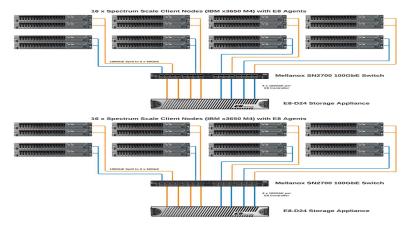
Legacy Congestion Notification:

- Packets marked as they enter queue
- Notification delayed until queue empties

E8 High-Performance NVMe Storage

1st Sub-millisecond Overall Response Time (ORT) – a World Record!


- SPEC SES2014 Software build benchmark results
 - 600 builds and 0.69ms ORT
 - Previous record 520 builds and 1.04ms ORT
- E8 Storage configuration
 - 16 IBM Spectrum Scale client nodes simulate software build workloads
 - Mellanox ConnectX-4 100GbE adapter
 - E8 can support up to 96 host servers providing compute services
 - Mellanox SN2700 32-port 100GbE switch
 - E8-D24, high availability NVMe enclosure
 - 4 Mellanox ConnectX-4 100GbE adapters
 - 24 dual port NVMe SSDs from leading vendors
 - End-to-end RoCE

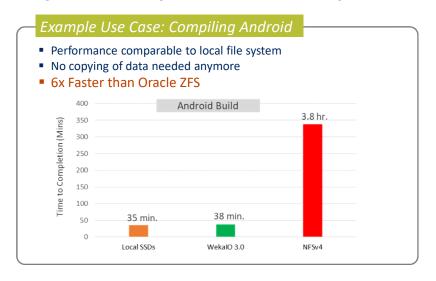

References:

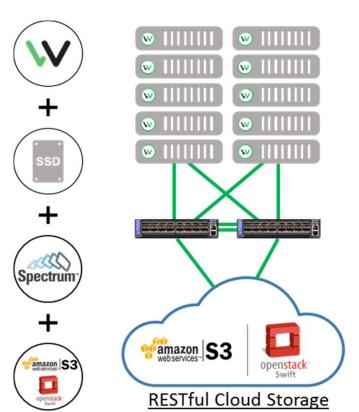
- SPEC SFS 2014 benchmark smashed by storage newbie
- E8 solution brief

Nutanix + Mellanox

Invisible IT Infrastructure

Nutanix Elevate Partner of the Year 2018 for Calm Blueprint • 2017 for Nutanix Ready


We have seen worldwide deployment and great customer experience together with Mellanox. Our customers and channel partners are realizing the value of Mellanox as the perfect complement to Nutanix enterprise cloud solutions.

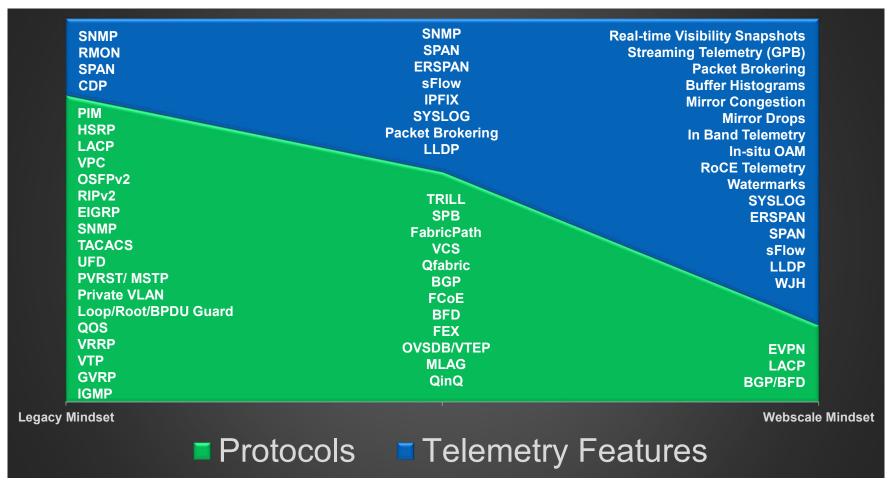

Venugopal Pai VP, Customer Success, Nutanix

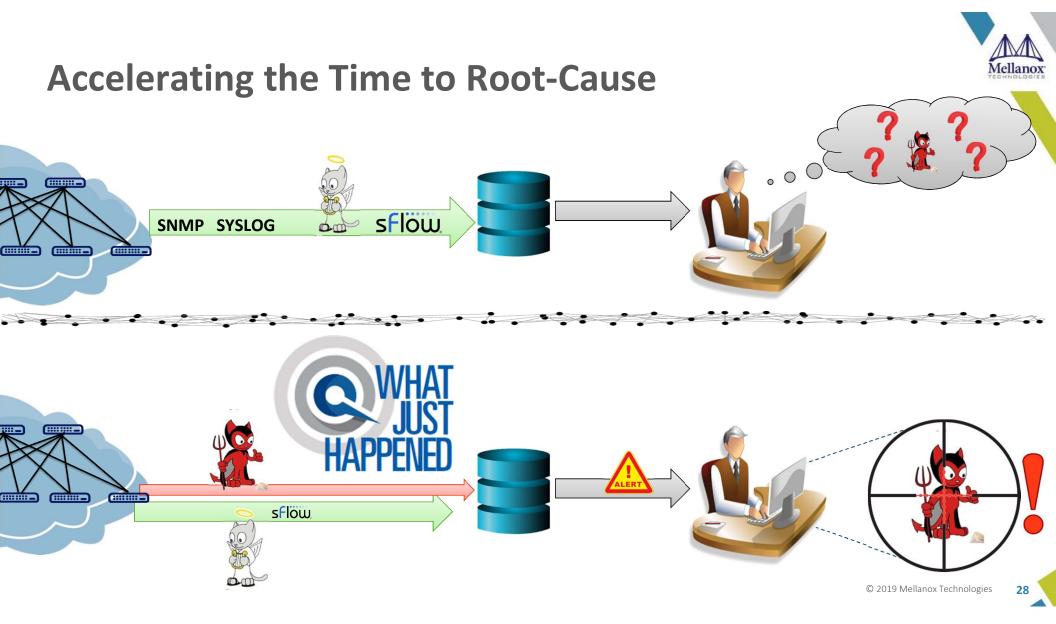
WekalO Cloud-native High Performance File System

Scale-out, shared file system

- Local FS performance with linear scalability
 - 4K random file R/W performance 50k / 11K IOPS per core
 - 1M sequential file R/W performance 980 / 370 MB/sec per core
 - Latency ~150 microseconds (QD=1)
 - Linearly scale with the number of cores
- Flexible usage hyperconverged, dedicated storage server, or a mixed topology in bare metal, virtualized, or private cloud environments
- Designed for demanding workloads: Machine Learning, Genomics, M&E and EDA

Source: Solution Brief




What Just Happened (WJH)

Best in class Telemetry

Data Center Evolution

What Does WJH Monitor?

Packet Drop

No Packet Drop

L1

- Bad CRC
- Flaky cable

L2/L3

- BGP
- VLAN

Buffer

- Incast
- Rate Limit

ACLs

- Deny based on IP
- Deny based on VLAN

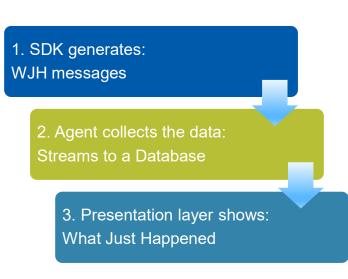
Congestion

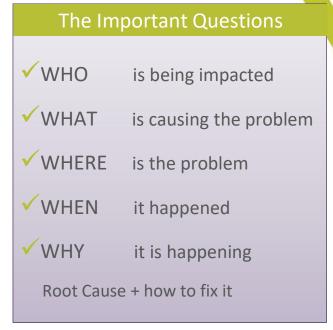
- Incast
- Busy storage device

Latency

- Pause frames
- Congestion → latency

Route Validation


- · Packet doesn't reach firewall
- Packet takes suboptimal path


Load Balance Validation

- Suboptimal ECMP
- Suboptimal LAG

WJH – How Does It Work?

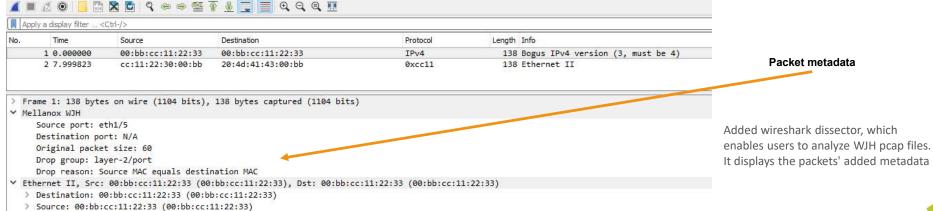
Packet's 5 Tuple +
very detailed description

WJH on Onyx CLI - Show Commands

PktID	Timestamp	sPort	dPort	Size(B)	VLAN	sMAC	dMAC	EthType	Src IP	Dst IP	L4 sPort	L4 dPort	Drop Group	Drop Reason
1	2019/03/12 00:55:56.400	eth1/5	N/A	181	3229	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	57.86.147.54	115.79.150.210	3656	22 (ssh)	Forwarding	VLAN filtering
2	2019/03/12 00:55:56.401	eth1/5	N/A	192	3229	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	141.107.161.105	243.65.169.17	3438	443 (https)	Forwarding	VLAN filtering
	2019/03/12 00:55:56.403	eth1/5	N/A	141	3229	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	165.154.188.84	210.60.223.240	29406	80 (http)	Forwarding	VLAN filtering
4	2019/03/12 00:55:56.404	eth1/5	N/A	152	3229	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	114.10.181.234	200.170.251.244	31782	110 (pop3)	Forwarding	VLAN filtering
	2019/03/12 00:55:56.406	eth1/5	N/A	90	2866	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	106.222.86.195	252.91.32.70	12438	22 (ssh)	Forwarding	VLAN filtering
6	2019/03/12 00:55:56.407	eth1/5	N/A	114	2866	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	68.51.56.134	64.168.189.64	56610	443 (https)	Forwarding	VLAN filtering
	2019/03/12 00:55:56.409	eth1/5	N/A	250	2866	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	25.183.197.25	145.91.28.94	63899	80 (http)	Forwarding	VLAN filtering
8	2019/03/12 00:55:56.411	eth1/5	N/A	94	2866	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	11.49.28.7	1.137.251.193	52287	110 (pop3)	Forwarding	VLAN filtering
9	2019/03/12 00:55:56.413	eth1/5	N/A	261	46	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	126.62.19.33	7.228.191.213	34428	22 (ssh)	Forwarding	VLAN filtering
10	2019/03/12 00:55:56.414	eth1/5	N/A	183	46	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	155.201.57.224	234.182.118.27	59651	443 (https)	Forwarding	VLAN filtering
11	2019/03/12 00:55:56.416	eth1/5	N/A	227	46	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	145.151.15.101	175.228.192.61	8122	80 (http)	Forwarding	VLAN filtering
12	2019/03/12 00:55:56.418	eth1/5	N/A	180	46	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	126.232.158.107	190.8.222.180	53471	110 (pop3)	Forwarding	VLAN filtering
13	2019/03/12 00:55:56.433	eth1/5	N/A	160	3229	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	253.107.196.229	101.220.165.115	17895	22 (ssh)	Forwarding	VLAN filtering
14	2019/03/12 00:55:56.436	eth1/5	N/A	293	3229	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	143.75.36.123	194.54.148.249	60560	443 (https)	Forwarding	VLAN filtering
15	2019/03/12 00:55:56.437	eth1/5	N/A	142	3229	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	131.233.235.11	152.131.242.25	44714	80 (http)	Forwarding	VLAN filterin
16	2019/03/12 00:55:56.438	eth1/5	N/A	130	3229	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	126.188.76.134	88.162.122.110	22998	110 (pop3)	Forwarding	VLAN filterin
17	2019/03/12 00:55:56.441	eth1/5	N/A	224	2866	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	87.54.72.32	89.139.82.40	36793	22 (ssh)	Forwarding	VLAN filterin
18	2019/03/12 00:55:56.442	eth1/5	N/A	77	2866	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	105.156.235.23	156.36.208.239	6618	443 (https)	Forwarding	VLAN filterin
19	2019/03/12 00:55:56.444	eth1/5	N/A	117	2866	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	154.69.197.178	36.32.138.74	59526	80 (http)	Forwarding	VLAN filtering
20	2019/03/12 00:55:56.446	eth1/5	N/A	208	2866	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	202.150.22.125	237.98.191.157	44793	110 (pop3)	Forwarding	VLAN filtering
21	2019/03/12 00:55:56.447	eth1/5	N/A	80	46	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	118.5.210.86	204.188.121.247	32007	22 (ssh)	Forwarding	VLAN filtering
22	2019/03/12 00:55:56.449	eth1/5	N/A	62	46	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	127.31.116.18	241.252.121.189	17587	443 (https)	Forwarding	VLAN filtering
23	2019/03/12 00:55:56.450	eth1/5	N/A	67	46	00:50:56:1B:90:06	E4:1D:2D:46:F8:1E	IPv4	219.56.191.135	158.152.82.127	39853	80 (http)	Forwarding	VLAN filtering

recently - read and clear data from HW

last-read - read info from memory cache. Can be executed several times in order to receive the same historical info until recently is executed again


WJH – Create pcap file

Type: IPv4 (0x0800)

- By default, Show recently command creates a pcap file with all the packets and the metadata
- On packet loss, or a critical system failure, the system will autogenerate a .pcap file user configurable

Pcap file location

© 2019 Mellanox Technologies

NEO – Fabric Level View

2018-10-22 12:40:10

10 213 53 4

Fth1/1

Dashboard General RoCE What Just Happened Members List & Last Dropped Packets Lookup Switch LB Lookup Switch MC Null Lookup Switch UC Tunnel Ingress Switch STP Tunnel Ingress Packet Re.. Ingress Packet Reserved DMAC Ethernet 11538 11538 Ingress Packet SMAC Is MC ● IP 23.08% 33.33% Ingress Packet SMAC Equals DM Ingress Switch VLAN Ingress Switch Vtag Allow Last 50000 dropped packets Last dropped packet: 2018-10-22 12:40:10 Issues Reason Description: Destination MAC is Reserved (DMAC=01-80-C2-00-00-0x) Reason Severity: 69 Sort By ▼ 10 > Switch IP Timestamp Interface Source MAC Destination MAC Source IP > 2018-10-22 12:40:10 10.213.53.8 Eth1/1 N/A N/A N/A > 2018-10-22 12:40:10 10.213.53.4 Eth1/1 N/A N/A N/A 2018-10-22 12:40:10 10.213.53.11 Eth1/1 N/A N/A N/A

N/A

N/A

N/A

Summary: Mellanox ESF Switches

