
Network flows

Tomer Perry

IBM Spectrum Scale Network

Outline

 Overview

 Types of Network traffic in IBM Spectrum Scale environment

 Components

 Component traffic flow

 Other resources

2

Overview

● IBM Spectrum Scale, like any distributed software, depends highly on the network
infrastructure in order to operate efficiently.

● The goal of this presentation is to provide a description of the various network traffic
flows involved in the IBM Spectrum Scale environment.

● Network designers can use this information to design a suitable network for the IBM
Spectrum Scale environments

Types of network traffic in IBM Spectrum Scale environment

● In general, network traffic in IBM Spectrum Scale can be divided into 3 major types:

– Data/Metadata Traffic:
This type of traffic is mostly around actual data movement between various IBM Spectrum Scale components. It might travel over TCP/IP or use RDMA depending on the
network type and protocol being used.
Examples include: NSD traffic, GNR synchronization, public NAS protocol traffic, AFM replication traffic , external pools traffic etc.

– Control traffic:
This type of traffic consists of messages (usually small payloads) that are being used for control purposes. It includes both internal and external traffic (internal traffic involves
control traffic between IBM Spectrum Scale components, while external traffic involves control traffic between IBM Spectrum Scale and external entities).
Examples includes: Token traffic, disk leases traffic, encryption related key traffic, quota management traffic, monitoring traffic, CTDB traffic, configuration management traffic,
authentication traffic etc.

– Adminitration traffic:
This type of traffic is around administrative operations that are being performed on an IBM Spectrum Scale environment
Examples includes: remote shell traffic, Web GUI traffic (external), REST administration traffic etc.

● Different components are using the above mentioned traffic type in different ways. Thus, we will try to describe each traffic type on a per
component basis

Note: In the last couple of years, many new features were introduced on top of the traditional GPFS product, which made IBM Spectrum Scale
more feature-rich. Many of those features required introducing new types of network flows.

IBM Spectrum Scale component - “Core”

● The traditional GPFS is the core component of IBM Spectrum Scale.

● All the non “core” IBM Spectrum Scale components essentially use the “core” components
while enriching its capabilities (access using standard protocols, management capabilities
etc.) . Thus, the flows discussed in this section apply to the other components as well.

● Some traffic flows depend on the features being used (for example: encryption, quotas
etc.).

● Some traffic flows are affected by the configuration being used (for example: replication
traffic).

IBM Spectrum Scale components - “Core”
Data traffic

● The basic data traffic type in “Core” environment is that data transfer between the NSD
servers and various clients (which might have other roles, like protocol nodes, TSM nodes,
AFM GW, TCT nodes etc.). In the context of this document, Data includes filesystem
metadata as well.

● Data traffic is using the NSD protocol (Network Shared Disk) over either TCP/IP and/or
RDMA (over Ethernet – a.k.a. RoCE, over IB and over OPA). RDMA protocol is considered
more efficient, especially for large I/O sizes.

● The required characteristics of the data channel highly depend on the customer workload
(throughput oriented, latency oriented etc.). While metadata workload is usually latency-
sensitive.

● For sequential workloads, data messages size may be as large as the file system block size.

● When using IBM Spectrum Scale sync replication, the client is responsible for writing multiple
copies. Thus, it is required to take those into account as well (2X/3X writes for 2/3 replicas).
For FPO configurations, where enableRepWriteStream is enabled, the first NSD server will
write the third replica instead of the client.

● Other data paths, which are still considered “core” are the ones related to various features
around moving data out of/into “IBM Spectrum Scale” environments:

– AFM GW: Read/write (configuration dependent) data to/from external sources (either
remote GPFS cluster or generic NFS server)

– Spectrum Protect HSM: When using Spectrum Protect as an external pool for ILM,
data will move to/from IBM Spectrum Scale to the IBM Spectrum Protect
infrastructure.

– TCT: Transparent Cloud Tiering used as an external pool as well, data will be moved
to/from the external cloud/Object infrastructure

NSD
server

NSD
server

NSD
server

AFM
GW

AFM
GW

TSM
HSM

TSM
HSM

TSM
SRV

TCT
GW

TCT
GW

Cloud

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

Remote Cluster
/NFS server

IBM Spectrum Scale components - “Core”
Control traffic

● Control traffic in IBM Spectrum Scale environments can
be divided into three major types:

– Cluster “well being” - i.e. disk leases (“heartbeat”)

– Data access or consistency management
(Tokens, quotas, allocation etc.)

– Configuration or feature related (key
management, Zimon collectors, configuration
management, AFM related RPCs etc)

● Most of these types of communication are latency
sensitive (i.e. slow response time will affect
performance) however, some of them,especially the
“well being” ones are less latency sensitive, but highly
impact the availability of nodes in the cluster if message
delay exceeds specific values (e.g. heartbeat timeouts).

● Note: In most cases, a node can play multiple roles.

NSD
server

NSD
server

NSD
server

AFM
GW
AFM
GW

CL
MGR

FS
MGR

Zimon

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

Token
SRV

Meta
Node

AFM
GW

Token
SRV
Token
SRV

Meta
Node

Meta
Node

KLM
SRV

CCR
SRV
CCR
SRV
CCR
SRV

ZimonZimonZimonZimon

IBM Spectrum Scale components - “Core”
Control traffic

“Cluster well being” - a.k.a disk leases traffic

● In each cluster, the cluster manager manages the disk
leases. The cluster manager is automatically elected from
the list of “quorum nodes”.

● Each node (regardless of its role) needs to renew its lease
with the cluster manager server (dynamically elected) at
regular intervals (35 sec. By default).

● If a node fails to renew its lease, the cluster manager will
try to ping the “suspected node” before expelling it.

● Another expel case might take place if a node can’t talk to
another node. In that case, it will ask the CL mgr to expel
the node. The CL MGR will decide which node needs to be
expelled

● All nodes in the local cluster (and potentially on remote
clusters) participate in the lease-renewal mechanism,
regardless of their role.

NSD
server

NSD
server

NSD
server

AFM
GW
AFM
GW

CL
MGR

FS
MGR

Zimon

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

Token
SRV

Meta
Node

AFM
GW

Token
SRV
Token
SRV

Meta
Node

Meta
Node

KLM
SRV

CCR
SRV
CCR
SRV
CCR
SRV

ZimonZimonZimonZimon

IBM Spectrum Scale components - “Core”
Control traffic

“Data access/consistency management”

● As a distributed filesystem, IBM Spectrum Scale needs some
mechanisms in order to assure data consistency as well as capacity
management. We describe those cases below:

– Tokens:
Overview:
One of the basic constructs of IBM Spectrum Scale, as a parallel
fs, is the use of tokens in order to maintain consistency.
Essentially, in order to perform an operation on a filesystem
object (file/directory etc.) a relevant token
is required (for reading, writing, caching etc.).
Workflow:
At least one token server is automatically selected from the list
of “manager” nodes. The token servers manage the tokens, and
each client (regardless of its role) needs to contact a token
server. The token servers “divide” the object responsibility
between them based on inode number, thus achieving load
balancing and better resiliency.
Network Requirements:
In general, token traffic is based on small RPC messages, which
are mostly latency sensitive (i.e. not throughput oriented). Slow
response time (due to latency, network congestion etc.) might
result in “hangs” or “hiccups” from user/application perspective

NSD
server

NSD
server

NSD
server

AFM
GW
AFM
GW

CL
MGR

FS
MGR

Zimon

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

Token
SRV

Meta
Node

AFM
GW

Token
SRV
Token
SRV

Meta
Node

Meta
Node

KLM
SRV

CCR
SRV
CCR
SRV
CCR
SRV

ZimonZimonZimonZimon

IBM Spectrum Scale components - “Core”
Metadata traffic in presence of file sharing

“Data access/consistency management”

– Metanode:

Overview:
A corner case in token management (in order to achieve better
performance) is the use of a “metanode”.
One of the challenges in multi-node access to the same object is
the ability to maintain metadata consistency. While in theory, the
common token system can be used, updating (or querying) object
metadata might result in many token “steals”. Thus, we use a
slightly different mechanism, in which one node (usually the first
node that opened the object) will act as a “metadata node” for that
object. Any other node that would like to update/query the object’s
metadata (inode fields) will talk to that node – thus achieving
better scalability for multiple objects.The metanode will be the only
one updating the object’s metadata through the NSD server.
Workflow:
The main difference in workflow when considering the metanode
role is that there will be metadata traffic not only between NSD
clients and server, but also directly between different NSD clients.
Network Requirements:
Metanode traffic is similar to generic token traffic, i.e. latency-
sensitive for small messages.

NSD
server

NSD
server

NSD
server

AFM
GW
AFM
GW

CL
MGR

FS
MGR

Zimon

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

Token
SRV

Meta
Node

AFM
GW

Token
SRV
Token
SRV

Meta
Node

Meta
Node

KLM
SRV

CCR
SRV
CCR
SRV
CCR
SRV

ZimonZimonZimonZimon

IBM Spectrum Scale components - “Core”
Control traffic

“Data access/consistency management”

– Filesystem allocation and quota:

Overview:
Managing block and inode allocation in highly distributed filesystem is a big
challenge. While there are similarities between standard allocation and
quotas, the main difference is that quotas operates at finer granularity
(there are separate quota for each user/group/fileset etc.) , Thus different
mechanisms are used that affect the communication impact on both.
Workflow:
For filesystem based block/inode allocation, a set of predefined allocation
regions are used. Thus, when a node needs block or inode allocation, it just
needs to be assigned with an available region. The communication impact is
relatively low until the region is used or “Stolen” by another node. The FS
MGR manages the region allocation.
Quota is a bit more challenging as it requires much more frequent
messaging. Thus, an eventual consistent usage was implemented. Each
node will get a “share” of blocks/inodes for the relevant quota entity
(autotuned post 4.1.1). The quota manager, running on the FS MGR, will
manage those shares assignment upon request.
Network Requirements:
Block/inode allocation is also based on small messages and thus are
latency sensitive. While regular allocation might not be affected by slowness
due to the region based approach, quotas allocation might affect
write/create performance.
In both cases, all nodes will contact the respective FS MGR in order to get
allocation regions and/or quota shares.

NSD
server

NSD
server

NSD
server

AFM
GW
AFM
GW

CL
MGR

FS
MGR

Zimon

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

Token
SRV

Meta
Node

AFM
GW

Token
SRV
Token
SRV

Meta
Node

Meta
Node

KLM
SRV

CCR
SRV
CCR
SRV
CCR
SRV

ZimonZimonZimonZimon

IBM Spectrum Scale components - “Core”
Control traffic

“Configuration/feature related”

– Key management:
Overview:
When IBM Spectrum Scale introduced the native
filesystem encryption, a new dependency (or
communication flow) was introduced, the ability to talk
to a key server (currently either SKLM or Vormetrics)
Workflow:
Since any node in the environment (either local or
remote cluster) might need to access encrypted data,
all nodes needs to have access to a key server.
While the nodes will cache the keys for some time
(configurable) not being able to fetch keys from the
key server might result in data access error
Network Requirements:
Key fetching from key server/s is mostly around small
messages to the designated set of servers. As
mentioned above, all nodes accessing encrypted data
need to have access to those servers

NSD
server

NSD
server

NSD
server

AFM
GW
AFM
GW

CL
MGR

FS
MGR

Zimon

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

Token
SRV

Meta
Node

AFM
GW

Token
SRV
Token
SRV

Meta
Node

Meta
Node

KLM
SRV

CCR
SRV
CCR
SRV
CCR
SRV

ZimonZimonZimonZimon

IBM Spectrum Scale components - “Core”
Control traffic

“Configuration/feature related”

– Performance collection (zimon):
Overview:
Starting with IBM Spectrum Scale 4.1.1 a performance collection
solution is included with the product. It is based on the zimon
technology. Zimon collects a variety of performance related metrics
to be later presented using either IBM Spectrum Scale GUI,
Grafana (using a bridge) or CLI (using the mmperfmon command)
Workflow:
Like most performance monitoring systems, zimon (starting with
IBM Spectrum Scale 4.2) can potentially use a federated structure
of reporters (every node) and collectors (specifically defined nodes).
Each node reports to its designated collector allowing the various
collectors to be queried for the collected data. The collectors know
about each other – thus able to satisfy queries for performance data
stored on other collectors.
Network Requirements:
Zimon reporting is also based on relatively small messages, flowing
between monitored nodes to their designated collector. In order to
achieve HA one client might report to more then one collector.
That said, its important to note that zimon traffic is not in the “data
path” meaning, lack of ability to report in a timely fashion will result
in some performance data missing, but wouldn’t affect actual data
access (i.e. no user impact, only admin impact).

NSD
server

NSD
server

NSD
server

AFM
GW
AFM
GW

CL
MGR

FS
MGR

Zimon

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

Token
SRV

Meta
Node

AFM
GW

Token
SRV
Token
SRV

Meta
Node

Meta
Node

KLM
SRV

CCR
SRV
CCR
SRV
CCR
SRV

ZimonZimonZimon

IBM Spectrum Scale components - “Core”
Control traffic

“Configuration/feature related”

– Configuration Management (CCR):
Overview:
In the past, GPFS used two designated configuration server nodes to
manage the authoritative version of the cluster configuration. Starting
with version 4.1 a new Cluster Configuration Repository (CCR) was
introduced. Today, all quorum nodes act as a CCR nodes, meaning
that they manage the distributed configuration state of the cluster.
CCR also allows using multiple configuration files – thus allowing IBM
Spectrum Scale configuration repository to manage much more info
(including protocols configuration, authentication configuration etc.).
Workflow:
In general, there are two major operations that can be done on
configuration that are being managed by CCR: update and query. Both
can be done from any node – but will change (and distribute the
changes) to all CCR nodes in the cluster and potentially (depending
on the specific configuration file) to all cluster nodes.
On update, the whole file will be pushed to the CCR nodes – and while
the file is usually small, it might grow to several MB on large clusters
Network Requirements:
CCR usually use small messages as well, from all cluster nodes.
Special nodes that utilize the CCR more then others (protocol nodes,
GNR nodes, GUI etc) might introduce more traffic then others.

NSD
server

NSD
server

NSD
server

AFM
GW
AFM
GW

CL
MGR

FS
MGR

Zimon

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

Token
SRV

Meta
Node

AFM
GW

Token
SRV
Token
SRV

Meta
Node

Meta
Node

KLM
SRV

CCR
SRV
CCR
SRV
CCR
SRV

ZimonZimonZimon

IBM Spectrum Scale components - “Core”
Control traffic

“Configuration/feature related”

– AFM related RPCs:
Overview:
While the data traffic part of AFM was discussed earlier,
AFM also uses client to AFM gateway RPCs in order to
let the GW know about filesystem operations that need
to be replicated by the GW.
Workflow:
When a client node (any client that does I/O on an AFM
fileset) perform read/write operation on a filesystem
object – it send special RPC to the AFM GW so the GW
can either add the specific op to the fileset queue (for
write/creates etc.) or validate/fetch that data on reads.
In order to perform the various operations, the AFM GW
node might require other type of traffic, data or control in
order to actually perform the required operations
Network Requirements:
The AFM related RPCs are small messages, as only the
op itself is being transmitted, not the data itself.
The traffic might flow to/from any node that access the
AFM fileset (on either local or remote clusters).

NSD
server

NSD
server

NSD
server

AFM
GW
AFM
GW

CL
MGR

FS
MGR

Zimon

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

Token
SRV

Meta
Node

AFM
GW

Token
SRV
Token
SRV

Meta
Node

Meta
Node

KLM
SRV

CCR
SRV
CCR
SRV
CCR
SRV

ZimonZimonZimon

IBM Spectrum Scale components - “Core”
Administration traffic

● Administration traffic in the core components can be divided into internal
traffic (i.e. traffic that is used to perform operations on the various cluster
nodes) and external traffic (traffic used by external entities in order to
“talk” to components performing operations on their behalf).

● The first type of traffic mostly uses remote shell commands (ssh on
modern systems). Some parts of internal traffic also use special RPCs
that replaced the remote shell commands on older versions of GPFS (in
order to minimize the dependency on remote shell). Those operations
are mostly around distributing config files on new nodes, NSD creation
etc. Some customers are using dedicated “management” network in
order to perform those (admin interface).
Unless otherwise defined (using the adminMode config option) any node
in the cluster might be the source of those operations, in most cases,
some other node will perform the actual operation on the requester
behalf (cluster manager/filesystem manager etc.).

● The second type (external administration) is mostly around web based
GUI access and/or the new REST interface to IBM Spectrum Scale
commands.

● Both operations are not in the data path and usually being used by
interactive commands (thus, extremely long delays will cause complaints
by administrators), but their performance requirements are not critical.

NSD
server

NSD
server

NSD
server

GUI

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

REST
mgmt

External
Management

clients

CL
MGR

FS
MGR

CCR
SRV
CCR
SRV
CCR
SRV

“Protocols”

IBM Spectrum Scale components - “Protocols”

● The “protocols” component of IBM Spectrum scale provides the ability to access data stored on various
filesystems using standard protocols.

● Today, the supported protocols are: NFS, CIFS, Swift (Object), HDFS and iSCSI (boot only) .

● “protocol nodes” are nodes that are running the various services. From IBM Spectrum Scale perspective
they are usually “client” nodes (function wise, not licensing wise) – meaning that they access the data as
any other IBM Spectrum Scale client node.

● Thus, on one hand they utilize all the data/control/management traffic as mentioned in the “core” section,
but on the other hand, uses other protocols data/control traffic (protocol dependent).

● Some protocols require special control protocol for cluster awareness (CIFS) and most protocols also
require authentication control traffic (usually to external authentication server/s).

IBM Spectrum Scale components - “Protocols”
Data traffic

● As mentioned earlier, protocol nodes are using
the core data traffic on their “backend” in order
to talk to the NSD servers.

● On the “frontend” protocol nodes are using the
relevant protocol data path.

● Depending on the access pattern and dataset
the traffic might be throughput oriented or
latency oriented.

● Some protocols might assign different roles to
different nodes (e.g. HDFS datanode vs.
namenode).

● It is advised not to use the same interfaces for
both IBM Spectrum Scale (backend) traffic and
protocols (frontend) traffic.

NSD
server

NSD
server

NSD
server

CIFS
server

CIFS
server

NFS
server

NFS
server

SWIFT
server

SWIFT
server

HDFS
Data

HDFS
Data

IBM Spectrum Scale components - “Protocols”
Control traffic

● As mentioned earlier, protocol nodes are
using the same control traffic on their
“backend” as any IBM Spectrum Scale client
node.

● On the protocols specific part, there are both
common control traffic (usually authentication)
and potentially protocol specific control traffic:

– Authentication: Most protocols (unless
using local authentication) will contact the
configured external authentication
servers in order to get authentication
related information. For the most part
those are relatively small, latency
sensitive operations

CIFS
server

CIFS
server

NFS
server

NFS
server

SWIFT
server

SWIFT
server

HDFS
Name

Auth
server

Auth
server

IBM Spectrum Scale components - “Protocols”
Control traffic

● Protocol Specific control traffic

– NFS:
IBM Spectrum Scale uses Ganesha NFS
server for providing NFS services.
Back-end:
Ganesha doesn’t use any special internode
communication, it relies on GPFS as a
clustering mechanism.
Front-end:
For the most part, the NFS protocol is includes
mixed data and control traffic. Control traffic
on NFS includes locking (separate on V3 and
integrated on V4), delegation backchannel (V4
– not yet supported) and rquota protocol.
All of the front end control data is mostly
around small messages somewhat latency
sensitive (application dependent).

NFS
server

NFS
server

NFS
server

lo
cking

b
ackchan

ne
l

rquo
ta

NFS
client
NFS
client
NFS
client
NFS
client
NFS
client

NFS
client
NFS
client
NFS
client
NFS
client
NFS
client

NFS
client
NFS
client
NFS
client
NFS
client
NFS
client

NFS
client
NFS
client
NFS
client
NFS
client
NFS
client

IBM Spectrum Scale components - “Protocols”
Control traffic

● Protocol Specific control traffic

– CIFS:
In order to provide CIFS services, IBM Spectrum
Scale is using the SAMBA software together
with the CTDB clustering software.
Back-end:
In order to manage the CIFS locking state inside
the cluster, CTDB needs to communicate
between the nodes. The traffic is based on
latency-sensitive small messages .
Front-end:
For the most part, the CIFS protocols mix both
data and control protocol – so its a bit hard to
differentiate between them. Control traffic
includes locking and callback channel (i.e. when
the server contacts the client to break oplocks
etc.). Both largely depend on the specific
workload and dataset.

CIFS
server

CIFS
server

CIFS
server

lo
cking

b
ackchan

ne
l

rquo
ta

NFS
client
NFS
client
NFS
client
NFS
client
CIFS
client

NFS
client
NFS
client
NFS
client
NFS
client
CIFS
client

NFS
client
NFS
client
NFS
client
NFS
client
CIFS
client

NFS
client
NFS
client
NFS
client
NFS
client
CIFS
client

CTDB

IBM Spectrum Scale components - “Protocols”
Data traffic

● Protocol Specific control traffic

– SWIFT/S3:
In order to provide Object based services, IBM
Spectrum Scale is using OpenStack Swift software
with some enhancements in order to provide better
S3 support.
Back-end:
Currently, the only traffic on the backend network with
the object implementation is the same traffic as the
regular “core” components.
Front-end:
The object implementation is using several data and
control messages over the public network:

– Data: With object protocol data, a client requests a read/write
operation to a protocol node over the front end (CES) network. With
traditional Swift mode, that request may be processed by the same
protocol node or passed to a different protocol node for processing.
With unified file and object access mode (Swift on File), the request is
always processed by the protocol node that received the client request.
 The front end (CES) network is used for passing requests between
protocol nodes

SWIFT
server

SWIFT
server

SWIFT
server

NFS
client
NFS
client
NFS
client
NFS
client
OBJ
client

NFS
client
NFS
client
NFS
client
NFS
client
OBJ
client

NFS
client
NFS
client
NFS
client
NFS
client
OBJ
client

NFS
client
NFS
client
NFS
client
NFS
client
OBJ
client

Data

IBM Spectrum Scale components - “Protocols”
Control traffic

● Protocol Specific control traffic

– SWIFT/S3 (Continued)
Control: Control traffic in Swift is mostly around
authentication traffic, and somewhat depends on the
chosen configuration:

● If the keystone authentication service is being provided by
the protocol nodes (the common case), then clients will
contact the keystone node in order to validate the user
and get security token.
When using Swift protocol, the server will cache the token
using memcached based on the token TTL, in order to
reduce the authentication traffic, when using S3, the
server will not cache any tokens.

● When clients contact a protocol node with their security
token, the node will contact the keystone server in order
to validate the token. In some cases, the keystone server
might be running on different node or on a 3rd party node
(when using external keystone).

– Note: Currently, all the authentication traffic will take place
using the front-end (CES) IPs and not the back-end network

SWIFT
server

SWIFT
server

SWIFT
server

NFS
client
NFS
client
NFS
client
NFS
client
OBJ
client

NFS
client
NFS
client
NFS
client
NFS
client
OBJ
client

NFS
client
NFS
client
NFS
client
NFS
client
OBJ
client

NFS
client
NFS
client
NFS
client
NFS
client
OBJ
client

keystone
server

AUTH

AUTH

IBM Spectrum Scale components - “Protocols”
Control traffic

● Protocol Specific control traffic

– HDFS:
For Hadoop-like workload (or applications that are using
the DFS API in order to access data, IBM Spectrum
Scale implements the transparent Hadoop connector.
The control data is being managed by a single
“namenode” at a time, which provides the client with info
which data nodes to get the actual data from.
Back-end:
There is no special back-end data going on for the
hadoop transparent connector.
Front-end:
Today, a single node act as the namenode at any given
time. Clients will first contact this node, using the
standard HDFS RPCs in order to query location of
specific blocks.
As with most control protocols, those are small
messages, relatively latency sensitive (since actual data
is usually large, the latency might not be that critical).

HDFS
name

HDFS
Data

HDFS
Data

NFS
client
NFS
client
NFS
client
NFS
client
HDFS
client

NFS
client
NFS
client
NFS
client
NFS
client
HDFS
client

NFS
client
NFS
client
NFS
client
NFS
client
HDFS
client

NFS
client
NFS
client
NFS
client
NFS
client
HDFS
client

“GNR”

IBM Spectrum Scale components - “GNR”

● GPFS Native Raid (a.k.a IBM Spectrum Scale RAID) is a software based RAID
implementation that is being used with several storage product, for example Elastic
Storage Server (ESS) from IBM.

● From “core” IBM Spectrum Scale perspective, GNR node are considered NSD servers
where “below” the NSD layer we have the GNR layer itself that takes care of the physical
disks management and data protection using declustered RAID technology.

● That said, the GNR layer itself present several new network related flows in order to
provide efficient write caching as well as monitoring of the partner node in each GNR
building block.

Main Data Flow

IBM Spectrum Scale components - “GNR”
Data traffic

● As mentioned earlier, GNR nodes also act as NSD servers, thus
the main data flow that is going on with GNR is reading/writing
to/from clients. That part is discussed in the “core” component. That
said, the high performance that GNR nodes usually provide, require
adequate network bandwidth in order to really utilize GNR nodes
capabilities.

● Another special type of traffic we have with GNR is NVRAM
replication. Essentially, GNR uses the internal NVRAM on the
nodes in order to implement a “logTip”, as an extremely fast small
write cache (technically, its an append to circular log) and for
internal GNR metadata operations. Since the NVRAM is internal to
each server, a special protocol (NSPD) is used in order to replicate
those operations into the building block “partner”. The replication is
based on small messages which are highly latency sensitive
(higher latency will impact small write performance). Under some
workload, it might make sense to separate this traffic using fast
interconnect (e.g. IB) in order to enhance the performance and
avoid the competition with the main data stream.

GNR
server

GNR
server

GNR
server

GNR
server

GNR
server

GNR
server

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSPD NSPD NSPD

Main Data Flow

IBM Spectrum Scale components - “GNR”
Control traffic

● Much of GNR’s control traffic is the same
as the rest of the “core” components.
That said, due to the special need to
manage large number of disks there are
some special control traffic going on in
the background in order to monitor each
building block partner.

● The nature of this traffic is around
relatively small messages, but since they
are performed in the background, latency
if not that critical for those.

GNR
server

GNR
server

GNR
server

GNR
server

GNR
server

GNR
server

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSD
client

NSPD NSPD NSPD

Other resources

Other resources

● List of ports being used by IBM Spectrum Scale components
https://ibm.biz/BdixM4

https://ibm.biz/BdixM4

	IBM Presentation Title
	Selecting a template
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

