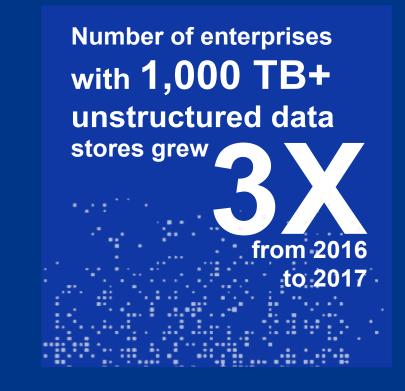
Breaking the Silo : Optimize your Data Pipeline for Analytics and AI

Par Hettinga IBM Enablement Leader – Unstructured Data 11th March 2019

Session Objectives

To show how IBM Software Defined Storage offerings address data management challenges in Analytics and AI use cases and help customers implement more efficient data pipelines



Content

- Data Management Challenges in Analytics and AI
- IBM Spectrum Storage for Analytics and AI
 - IBM Spectrum Scale
 - IBM Spectrum Discover
 - IBM Cloud Object Storage
- Data Unification using IBM Spectrum Scale
- Data Unification Case Studies
- Summary IBM Spectrum Storage for AI

Data Management Challenges in Analytics and AI

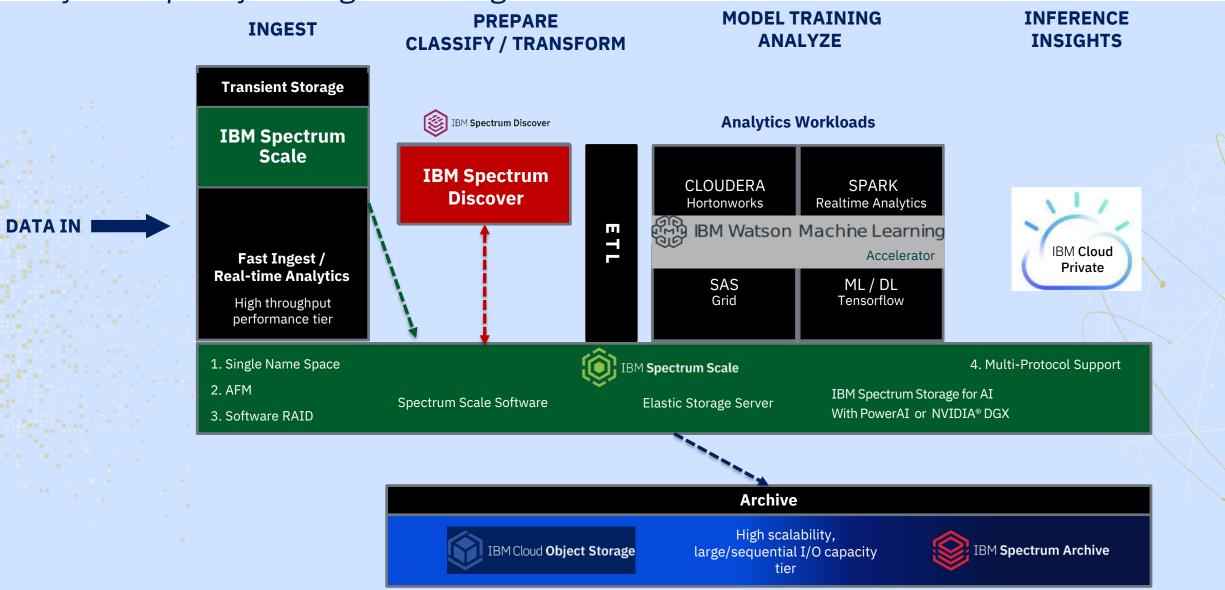
Biggest Unstructured Data Challenges

399/0 of firms see sourcing, gathering, managing & governing data as their biggest challenges when using systems of insight

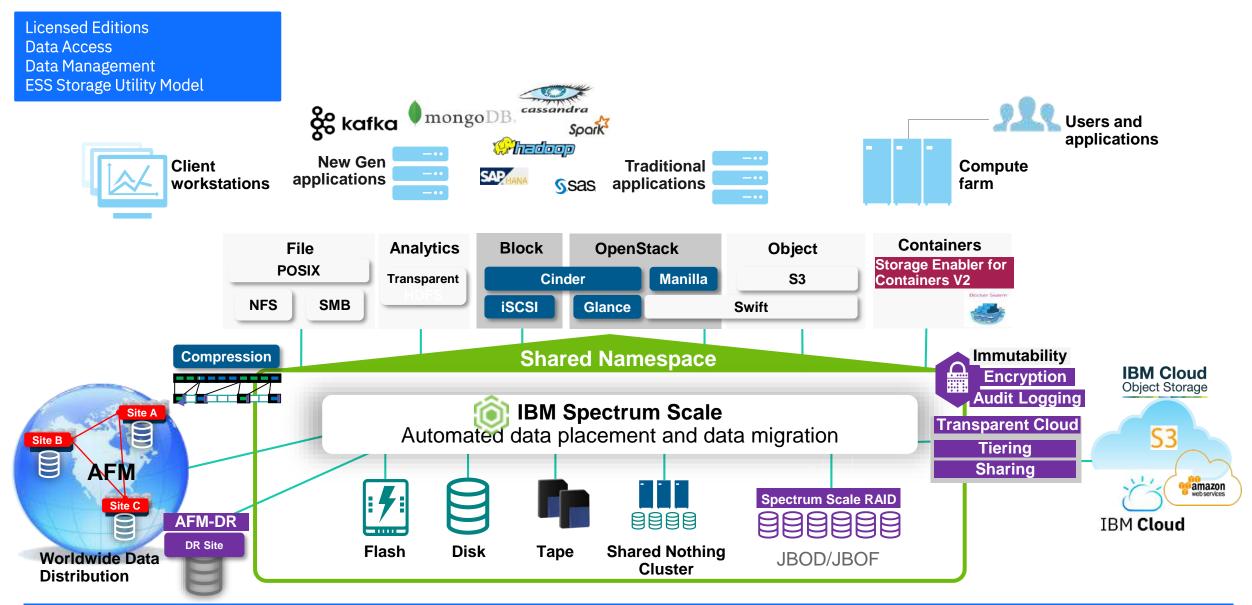
Source: Forrester Analytics, Global Business Technographics Data And Analytics Survey, 2017, Global Business Technographics Data And Analytics Survey, 2016 (Enterprises with 1000+ employees)

Data Management Challenges in Analytics and AI


- Data ingest and preparation cycle are too time consuming
- Multi-source data aggregation
- Silos of infrastructure for various analytics use cases
- Multiple copies of same data without a single source of truth
- Analytics on stale data
- Need to securely manage and protect data for traceability
- Need for global accessibility and collaboration


IBM Spectrum Storage for Analytics and AI

Analytics and AI Data Pipeline



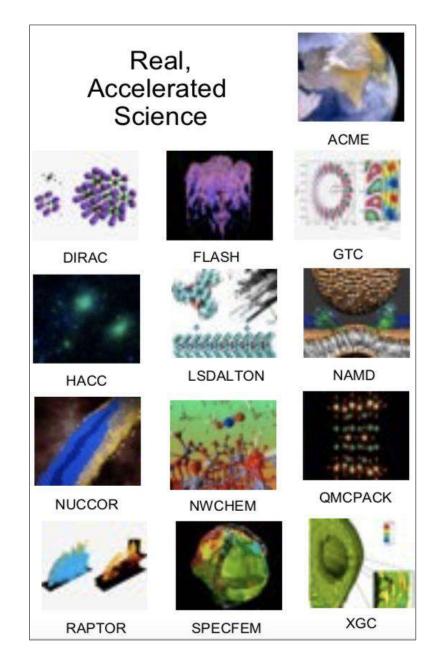
Analytics and AI Data Pipeline with IBM Storage

The fastest path from ingest to insights

IBM Spectrum Scale - Unleash Storage Economics on a Global Scale

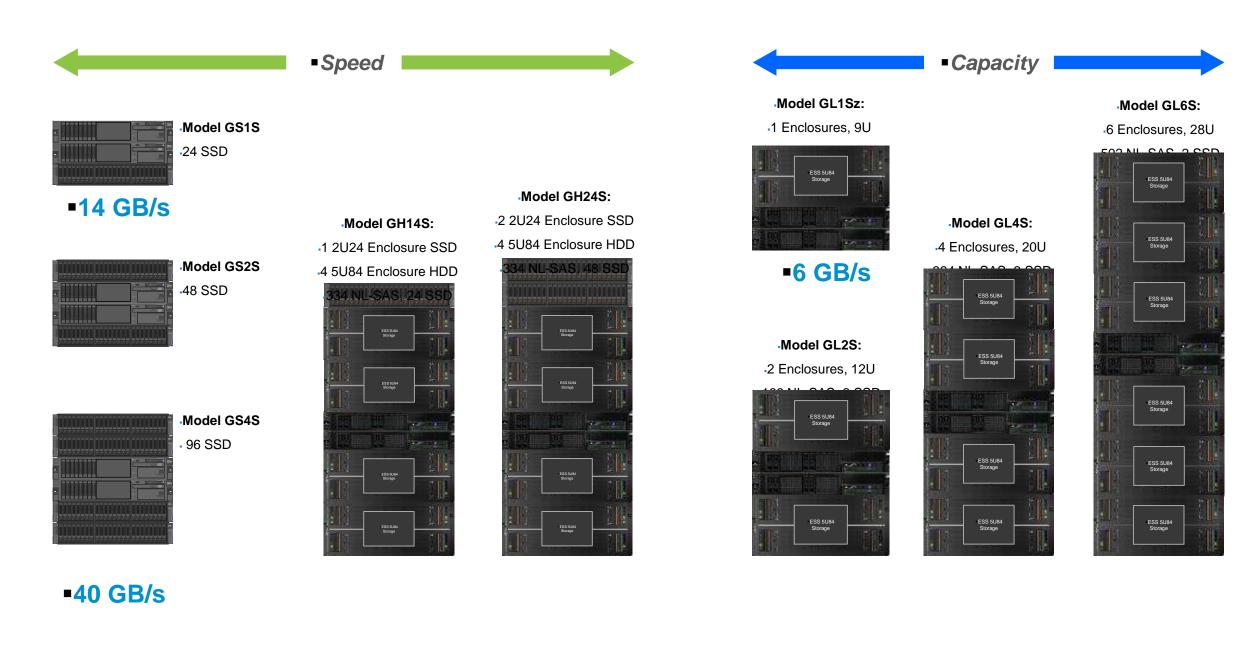
Consolidate all your unstructured data storage on spectrum scale with unlimited and painless scaling of capacity and performance. 4000+ clients using Spectrum Scale as data plane for Analytics and AI workloads

IBM Spectrum Scale – Parallel Architecture for Performance Scaling


Summit System

- 4608 nodes, each with:
 - 2 IBM Power9 processors
 - 6 Nvidia Tesla V100 GPUs
 - 608 GB of fast memory
 - 1.6 TB of NVMe memory
- 200 petaflops peak performance for modeling and simulation
- 3.3 ExaOps peak performance for data analytics and AI

2.5 TB/secThroughput to storagearchitecture250 PB


HDD storage capacity

IBM Spectrum Scale offers Deployment Choice

	Туре	Software licenses	Hardware	Details
IBM Spectrum Scale	Software Per TiB license	 Data Access Edition, Data Management Edition 	Bring your own servers, storage, network.	Combine with IBM ESS, or other IBM and other vendor storage/server hardware.
IBMESS	Bundled H/W + S/W Per-drive license, or per-TiB license. Storage Utility Model	 Data Access Edition or Data Management Edition Storage Utility Model available for ESS: billed for monthly capacity usage 	Bundled servers and storage. Includes IBM SSR software for advanced RAID/erasure coding.	Storage building block. Spectrum Scale based. Add ESS or Spectrum Scale + IBM or other vendor Storage//Server
IBM Cloud	Cloud	IBM Cloud AWS: Spectrum Scale Bring-your-own-license on AWS Marketplace	Provided by Cloud vendor	AWS install via catalogue

IBM Spectrum Scale as an Integrated Solution

Why IBM Spectrum Scale for Analytics/AI workloads?

Unmatched Scalability and Performance with the most optimized storage footprint

Performance leadership in AI benchmarks

40GB/s and 300TB in 2U*, Linear scaling of 120GB/s in 6U*

* With Spectrum Scale NVMe appliance – <u>PDF document</u>

Reduce datacenter with in-place analytics

•Access to the data using any of the industry standard protocols.

•No need to maintain separate copies for different applications.

•Spectrum Scale •Storage pool2 •Storage rich servers

Policy based auto tiering between storage pools

Extreme scalability with parallel file system

•Scale to billions of files. No centralized metadata node bottleneck.

Flexible storage architectures

OR

•Install SW in hyperconverged

mode

■in Shared storage mode

 Support for flexible and hybrid architectures under common namespace. Enabled for running containerized workloads.

Global namespace that spans geographies

Stretch clusters and Active – Active replicas of data for real time global collaboration

Full Data Life Cycle Management

IBM Cloud Object Storage – #1 Object Store by IDC 2018

Flexible for any app

- Use On Premise, Managed Cloud or Hybrid Cloud
- Use as a Service Dedicated or Public
- Deploy to both traditional and native Cloud applications
- Provides Active Archive and Cold tier
- Global ingest capability

- Client proven enterprise scale

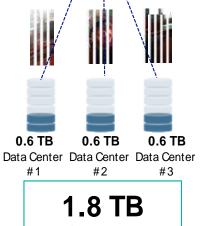
- Shared nothing architecture, with strong consistency
- Scalable namespace mapping with no centralized metadata
- Highly reliable and available with replication
- Distributed rebuilder to maintain consistency
- Distributed collection and storage of statistics needed for management
- APIs for integration with external management applications
- Automated network installation

Simplicity delivers big advantage

- Manages all storage from a single pane of glass with zero down time – on-premises, in the cloud or both
- Uses fewer administrative resources than traditional storage
- Requires no extra management for storage high availability, backup or disaster recovery

IBM Cloud Object Storage information dispersal

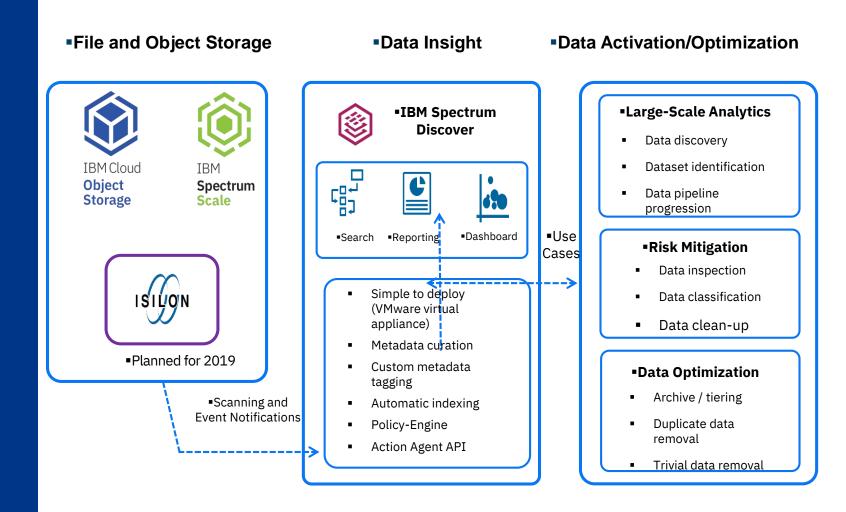
Redefining availability and economics of data storage


Traditional storage 1 TB of usable data IBM Cloud Object Storage requires less than half the storage and 70% lower TCO*. You can lose a disk, a server or even a whole site due to failure or disaster, and still quickly recover 100% of your data. Slices are distributed geographically for 1.2 TB 1.0 TB 1.2 TB durability and availability. Data Data Backup Center #1 Center #2 Data 3.4 TB

Traditional storage requires 3.4 TBs raw storage capacity for 1 TB of usable storage.

of raw storage

I BM Cloud Object Storage

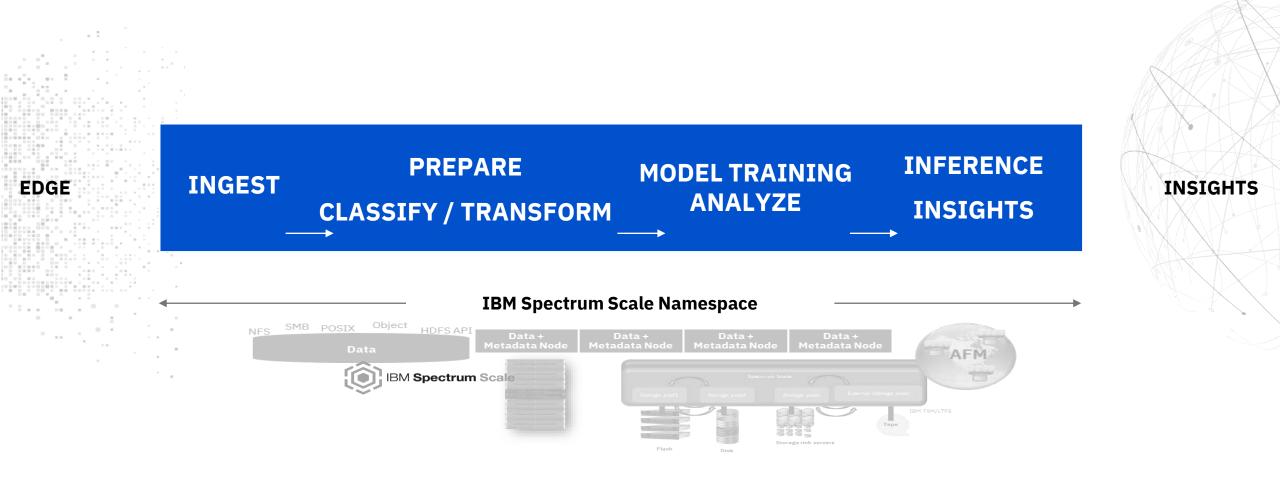

Our object storage requires only 1.8 TBs raw storage capacity for 1 TB of usable storage.

of raw storage

IBM Spectrum Discover Overview

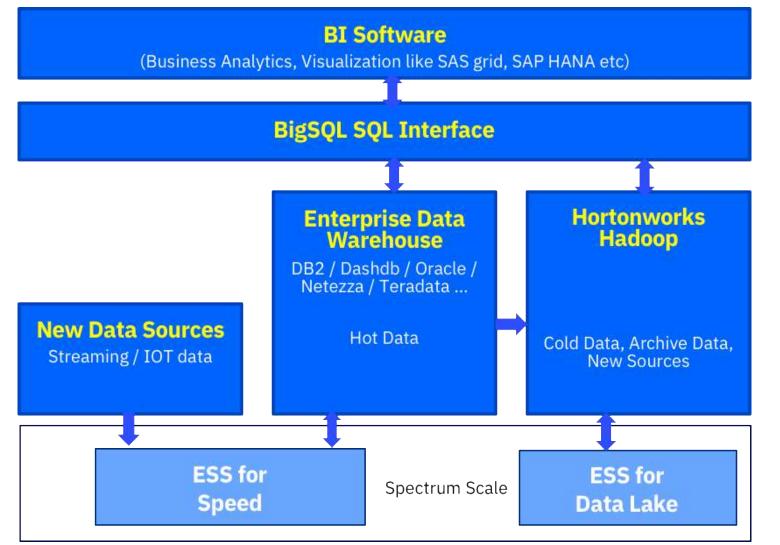
Data Insight for Analytics, Governance, & Optimization

- Automate cataloging of unstructured data by capturing metadata as it is created
- Enable comprehensive insight by combining system metadata with custom tags to increase storage admin & data consumer productivity
- Leverage extensibility using the API, custom tags, and policy-based workflows to orchestrate content inspection & activate data in AI, ML, & analytics workflows



Data Unification with IBM Spectrum Scale

Common data layer that can be accessed by multiple applications


Build more efficient workflow / pipeline Improve data governance Reduce storage footprint

Data Unification with IBM Spectrum Scale

Data Unification Case Studies

EDW Optimization Simplify data management using common storage between EDW and Hadoop

Archive Data away from EDW

- Move cold or rarely used data to Hadoop as active archive
- Store more of data longer

Offload costly ETL process

- Free your EDW to perform high-value functions like analytics & operations, not ETL
- Use Hadoop for advanced ETL

Optimize the value of your EDW

- Use Hadoop to refine new data sources, such as web and machine data for new analytical context

Control cluster sprawl

- Grow storage independent of compute with ESS
- POWER servers deliver 1.7x throughput compared to Hortonworks on x86
- Up-to 60% less storage footprint

Reduce migration effort & skillset gap

- Use existing investment in Oracle/DB2/Netezza skills
- BigSQL allows you to migrate applications without major code rewrites and additional SQL development

A Financial Services company in Europe is optimizing their DB2 warehouse using Hortonworks Hadoop; and is using ESS as the common storage behind DB2 and Hadoop.

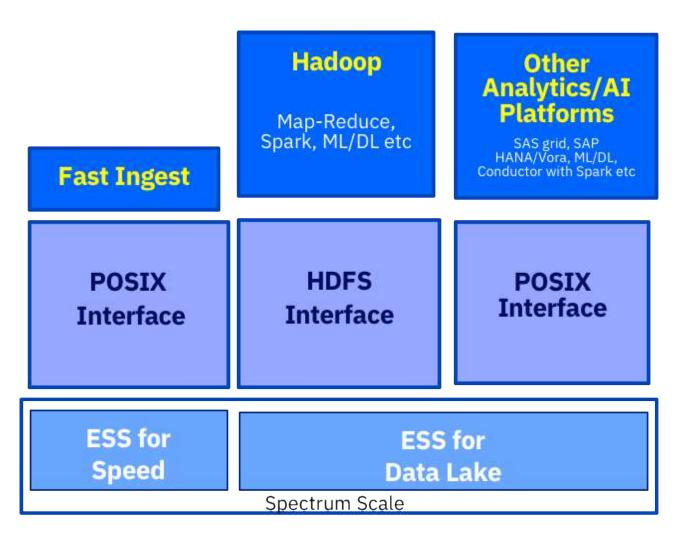
Integrated HPC and Hadoop Efficiently transform data into insights with single data lake for HPC & Hadoop

Fast Ingest		HPC I, Write, MPI, C-code, Python etc	Hadoop Map-Reduce, Spark, ML/DL etc		
POSIX Interface	POSIX Interface	NFS/SMB/Object Interface Spectrum Scale Protocol Node	HDFS Interface		
ESS for Speed	ESS for Data Lake Spectrum Scale				

Extend HPC to add modern analytics capabilities

- Efficient movement of data between modern and traditional applications with common namespace
- Spectrum Scale in-place analytics capabilities enable accessing the same data using NFS/SMB/Object/POSIX/HDFS without requiring any modifications to the data
- Improve data reliability and governance with single data lake

Ingest fast and improve time to insight


- POSIX interface combined with ESS Flash storage gives super fast ingest ability
- Common namespace enables running some edge analytics at the ingest layer as well

Control cluster sprawl

- Grow storage independent of compute with ESS
- Up-to 60% less storage footprint
- POWER servers deliver 1.7x throughput compar

NASA and a Healthcare company from middle east are using common Spectrum Scale data lake to efficiently get insights using traditional HPC and Hadoop analytics.

Unified Analytics/AI Workflows Single data lake for Hadoop and non-Hadoop workloads

All analytics workflows on common storage

- Improve data reliability and governance with single data lake for Hadoop and non-Hadoop analytics setups
- Build ML/DL workflows that use multiple analytics platforms
- Share data across analytics workflows as appropriate

Ingest fast and improve time to insight

 POSIX interface combined with ESS Flash storage gives super fast ingest ability

Control cluster sprawl

- Grow storage independent of compute with ESS
- Up-to 60% less storage footprint
- POWER servers deliver 1.7x throughput compared to Hortonworks on x86

A bank in South Africa is implementing HDP and SAS grid software on a common ESS based infrastructure.

Summary – IBM Spectrum Storage for AI

IBM Spectrum Storage for AI supercharges your AI data pipeline with storage solutions optimized for the unique demands of AI.

Integrating industry-leading servers, ISV / open source software and IBM software-defined storage, IBM Spectrum Storage for AI delivers simplified deployment, groundbreaking performance, and extended data management to drive developer productivity with the fastest path to insights.

IBM Spectrum Storage for AI – Available Solutions

https://www.ibm.com/it-infrastructure/storage/ai-infrastructure

- IBM Spectrum Storage for Hadoop/Spark workloads
 - IBM Spectrum Scale and Hortonworks/Cloudera Integration
 - IBM Spectrum Scale and IBM Spectrum Conductor for Spark Integration
- IBM Spectrum Storage for AI with NVIDIA DGX
 - IBM Spectrum Scale and NVIDIA DGX Reference Architecture
- IBM Spectrum Storage for AI with Power Systems
 - IBM Spectrum Scale and Power AC922 Reference Architecture
- IBM Spectrum Connect Storage Enabler for Containers
- IBM Spectrum Storage for AI in Autonomous Driving

Contacts

Pallavi Galgali *IBM Offering Manager – Storage Solutions for Analytics / AI* pgalgali@us.ibm.com +1-914-433-9882

Par Hettinga IBM Enablement Leader – Unstructured Data par@nl.ibm.com +31-(0)6-53359940

Christopher Maestas IBM Senior Architect Spectrum Scale cdmaestas@us.ibm.com +1-505-321-8636

